K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2017

a) (25x5 – 5x4 + 10x2) : 5x2 = (25x5 : 5x2 ) - (5x4 : 5x2 ) + (10x2 : 5x2 )

= 5x3 – x2 + 2

b) (15x3y2 – 6x2y – 3x2y2) : 6x2y

= (15x3y2 : 6x2y) + (– 6x2y : 6x2y) + (– 3x2y2 : 6x2y)

= \(\dfrac{15}{6}\)xy - 1 - \(\dfrac{3}{6}\)y = \(\dfrac{5}{2}\)xy - \(\dfrac{1}{2}\)y - 1.


28 tháng 10 2018

a) (25x^5 – 5x^4 + 10x^2) : 5x^2

= (25x^5 : 5x^2) – (5x^4 : 5x^2) + (10x^2 : 5x^2)

= 5x^3 – x^2 + 2

b) (15x^3y^2- 6x^2y – 3x^2y^2) : 6x^2y

= (15x^3y^2 : 6x^2y) + (-6x^2y : 6x^2y) + (- 3x^2y^2 : 6x^2y)

=\(\frac{15}{6}xy-1-\frac{3}{6}y\)

=\(\frac{5}{2}xy-1-\frac{1}{2}y\)

9 tháng 12 2018

a, 15x3y5z : 5x2y3 = 3xy2z.

b, 12x4y2 : ( - 9xy2 ) = \(\frac{3}{4}x^3\).

c, ( 30x4y3 - 25x2y3 - 3x4y4 ) : 5x2y3 = \(6x^2-5-\frac{3}{5}x^2y.\)

d, ( 4x4 - 8x2y2 + 12x5y ) : ( - 4x2 ) = -x2 + 2y2 - 3x3y.

a: \(5x^2y^4:10x^2y=\dfrac{1}{2}y^3\)

c: \(\left(-xy\right)^{10}:\left(-xy\right)^5=-x^5y^5\)

a: \(=3y^2-5x^2y^3-2y^2+3x^2y^3=y^2-2x^2y^3\)

b: \(=6x-y+2x^2+3y^2-2x^2+x=7x-y+3y^2\)

c: \(=x-y+4y^2-6xy+\dfrac{10x^2}{y}\)

 

23 tháng 9 2018

\(a.\left(9x^2y^3-15x^4y^4\right):3x^2y-\left(2-3x^2y\right)y^2\)

\(=3y^2-5x^2y^3-2y^2+3x^2y^3\)

\(=y^2-2x^2y^3\)

\(b.\left(6x^2-xy\right):x+\left(2x^3y+3xy^2\right):xy-\left(2x-1\right)x\)

\(=6x-y+2x^2+3y-2+x\)

\(=2x^2+7x+2y-2\)

\(c.\left(x^2-xy\right):x+\left(6x^2y^5-9x^3y^4+15x^4y^3\right):\dfrac{3}{2}x^2y^3\)

\(=x-y+4y^2-6xy+10x^2\)

23 tháng 9 2018

Oa, giờ mới biết bác cũng ở box Toán :))

a: \(=\dfrac{27a^6b^3\cdot a^2b^6}{a^8b^8}=27b\)

b: \(=3y^2-5x^2y^3-2y^2+3x^2y^3\)

\(=y^2-2x^2y^3\)

c: \(=6x-y+2x^2+3y-2x^2+x\)

\(=7x+2y\)

d: \(=x-y+2y^2-6xy+\dfrac{10x^2}{y}\)

16 tháng 8 2023

a) \(35x^9y^n=5.\left(7x^9y^n\right)\)

Để \(35x^9y^n⋮\left(-7x^7y^2\right)\)

\(\Rightarrow n\in\left\{0;1;2\right\}\)

16 tháng 8 2023

b) \(5x^3-7x^2+x=3x\left(\dfrac{5}{3}x^2-\dfrac{7}{3}x+\dfrac{1}{3}\right)\)

Để \(\left(5x^3-7x^2+x\right)⋮3x^n\)

\(\Rightarrow3x\left(\dfrac{5}{3}x^2-\dfrac{7}{3}x+\dfrac{1}{3}\right)⋮3x^n\)

\(\Rightarrow n\in\left\{0;1\right\}\)