K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 12 2021

\(\left(2x^3+x^2+10x+30\right):\left(2x+1\right)\)

\(=2x^3:\left(2x+1\right)+x^2:\left(2x+1\right)+10x:\left(2x+1\right)+30:\left(2x+1\right)\)

\(=2x^3:2x+2x^3:1+x^2:2x+x^2:1+10x:2x+10x:1+30:2x+30:1\)

\(=x^2+2x^3+\dfrac{1}{2}x+x^2+5+10x+15x+30\)

\(=2x^3+2x^2+\dfrac{51}{2}x+35\)

9 tháng 12 2021

=x^2+5 và dư 25 nha

 

9 tháng 12 2021

\(=\left(2x^3+x^2+10x+5+25\right):\left(2x+1\right)\\ =\left[x^2\left(2x+1\right)+5\left(2x+1\right)+25\right]:\left(2x+1\right)\\ =x^2+5\left(\text{dư }25\right)\)

8 tháng 8 2016

(2x-5)2+2(2x-5)(3x+1)+(3x+1)2

=(2x-5)[(2x-5)+2(3x+1)]+(3x+1)2

=(2x-5)[8x-3]+(3x+1)2

=16x2-46x+15+9x2+6x+1

=25x2-40x+16

=(5x)2-2*5x*4+42

=(5x-4)2

8 tháng 8 2016

phần nâng cao chính là một hằng đẳng thức hoàn chỉnh (a+b)2. trong đó 2x-5 là a và 3x+1 là b

9 tháng 12 2021

GIÚP VỚI !!!!!!!!!!!!!!!!!!!!!

 

9 tháng 12 2021

=x^2+5 và dư 25 nha

 

 

 

2 tháng 9 2016

<=> 4(x^2 + 2x + 1) + 4x^2 - 4x +1 - 8(x^2 - 1) = 11 
<=> 4x^2 + 8x + 4 + 4x^2 - 4x +1 - 8x^2 +8 - 11 = 0 
<=> 4x + 2 = 0 
<=> x = - 1/2

2 tháng 9 2016

\(4\left(x+1\right)^2+\left(2x-1\right)^2-8\left(x-1\right)\left(x+1\right)=11\)

\(4\left(x^2+2x+1\right)+4x^2-4x+1-8\left(x^2-1\right)=11\)

\(4x^2+8x+4+4x^2-4x+1-8x^2+8=11\)

\(4x+13=11\)

\(4x=-2\)

\(x=-\frac{1}{2}\)

9 tháng 10 2021

\(a,\Leftrightarrow\left[{}\begin{matrix}x+5=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=-\dfrac{1}{2}\end{matrix}\right.\\ b,\Leftrightarrow\left(x+2\right)\left(x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\\ c,\Leftrightarrow2x^2-10x-3x-2x^2=26\\ \Leftrightarrow-13x=26\Leftrightarrow x=-2\\ d,\Leftrightarrow x^2-18x+16=0\\ \Leftrightarrow\left(x^2-18x+81\right)-65=0\\ \Leftrightarrow\left(x-9\right)^2-65=0\\ \Leftrightarrow\left(x-9+\sqrt{65}\right)\left(x-9-\sqrt{65}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=9-\sqrt{65}\\9+\sqrt{65}\end{matrix}\right.\)

\(e,\Leftrightarrow x^2-10x-25=0\\ \Leftrightarrow\left(x-5\right)^2-50=0\\ \Leftrightarrow\left(x-5-5\sqrt{2}\right)\left(x-5+5\sqrt{2}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=5+5\sqrt{2}\\x=5-5\sqrt{2}\end{matrix}\right.\\ f,\Leftrightarrow5x\left(x-1\right)-\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(5x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{5}\end{matrix}\right.\\ g,\Leftrightarrow2\left(x+5\right)-x\left(x+5\right)=0\\ \Leftrightarrow\left(2-x\right)\left(x+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\\ h,\Leftrightarrow x^2+2x+3x+6=0\\ \Leftrightarrow\left(x+3\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-2\end{matrix}\right.\\ i,\Leftrightarrow4x^2-12x+9-4x^2+4=49\\ \Leftrightarrow-12x=36\Leftrightarrow x=-3\)

\(j,\Leftrightarrow x^2\left(x+1\right)+\left(x+1\right)=0\Leftrightarrow\left(x^2+1\right)\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2=-1\left(vô.lí\right)\\x=-1\end{matrix}\right.\Leftrightarrow x=-1\\ k,\Leftrightarrow x^2\left(x-1\right)=4\left(x-1\right)^2\\ \Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\\ \Leftrightarrow\left(x-1\right)\left(x^2-4x+4\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

10 tháng 1 2023

`a)2x^2+3(x-1)(x+1)=5x(x+1)`

`<=>2x^2+3x^2-3=5x^2+5x`

`<=>5x=-3`

`<=>x=-3/5`

__________________________________________

`b)(x-3)^3+3-x=0` nhỉ?

`<=>(x-3)^3-(x-3)=0`

`<=>(x-3)(x^2-1)=0`

`<=>[(x=3),(x^2=1<=>x=+-1):}`

__________________________________________

`c)5x(x-2000)-x+2000=0`

`<=>5x(x-2000)-(x-2000)=0`

`<=>(x-2000)(5x-1)=0`

`<=>[(x=2000),(x=1/5):}`

__________________________________________

`d)3(2x-3)+2(2-x)=-3`

`<=>6x-9+4-2x=-3`

`<=>4x=2`

`<=>x=1/2`

__________________________________________

`e)x+6x^2=0`

`<=>x(1+6x)=0`

`<=>[(x=0),(x=-1/6):}`

10 tháng 1 2023

yeu

13 tháng 11 2016

Câu 1:

\(2x^3-3x^2+x+a\)

\(=2\left(x^3-6x^2+12x-8\right)+9\left(x^2-4x+4\right)+13\left(x-2\right)+\left(6+a\right)\)

\(=2\left(x-2\right)^3+9\left(x-2\right)^2+13\left(x-2\right)+\left(6+a\right)\)chia hết cho \(x-2\)khi và chỉ khi :

\(6+a=0\Leftrightarrow a=-6\). Vậy \(a=-6\).

Câu 2:

\(\left(x+1\right)\left(2x-x\right)-\left(3x+5\right)\left(x+2\right)=4x^2+1\)

\(\Leftrightarrow x^2+x-\left(3x^2+11x+10\right)=-4x^2+1\)

\(\Leftrightarrow x^2+x-3x^2-11x-10+4x^2-1=0\)

\(\Leftrightarrow2x^2-10x-11=0\)

\(\Delta'=\left(-5\right)^2-2\left(-11\right)=47>0\)

\(\Rightarrow\)Phương trình có 2 nghiệm phân biệt:

\(x=\frac{5+\sqrt{47}}{2}\)hoặc \(x=\frac{5-\sqrt{47}}{2}\)

Vậy phương trình có tập nghiệm \(S=\left\{\frac{5+\sqrt{47}}{2};\frac{5-\sqrt{47}}{2}\right\}\)