K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
10 tháng 10 2019

1/ \(\sqrt{2x-1+2\sqrt{2x-1}+1}+\sqrt{2x-1-2\sqrt{2x-1}+1}\)

\(=\sqrt{\left(\sqrt{2x-1}+1\right)^2}+\sqrt{\left(\sqrt{2x-1}-1\right)^2}\)

\(=\left|\sqrt{2x-1}+1\right|+\left|\sqrt{2x-1}-1\right|\)

\(=\sqrt{2x-1}+1+1-\sqrt{2x-1}\)

\(=2\)

2/ ĐKXĐ: \(a^2-1\ge0\Rightarrow a^2\ge1\Rightarrow\left[{}\begin{matrix}a\ge1\\a\le-1\end{matrix}\right.\)

3/ \(4\left|x\right|-\sqrt{\left(5x-1\right)^2}=4\left|x\right|-\left|5x-1\right|\)

\(=4x-\left(5x-1\right)=1-x\)

4/ \(\left\{{}\begin{matrix}x\ge0\\\sqrt{x}< \sqrt{7}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge0\\x< 7\end{matrix}\right.\) \(\Rightarrow0\le x< 7\)

5/ \(M=\sqrt{3-2\sqrt{2.3}+2}=\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}\)

\(=\left|\sqrt{3}-\sqrt{2}\right|=\sqrt{3}-\sqrt{2}\)

6/ \(\left|x\right|-\sqrt{\left(x-1\right)^2}=\left|x\right|-\left|x-1\right|=x-\left(x-1\right)=1\)

10 tháng 10 2019

1.

\(\sqrt{2x+2\sqrt{2x-1}}+\sqrt{2x-2\sqrt{2x-1}}\)

\(=\sqrt{2x-1+2\sqrt{2x-1}+1}+\sqrt{2x-1-2\sqrt{2x-1}+1}\)

\(=\sqrt{\left(\sqrt{2x-1}+1\right)^2}+\sqrt{\left(\sqrt{2x-1}-1\right)^2}\)

\(=\left|\sqrt{2x-1}+1\right|+\left|\sqrt{2x-1}-1\right|\)

\(=\sqrt{2x-1}+1+1-\sqrt{2x-1}=2\)

2.

\(\sqrt{a^2-1}\text{ xác định }\Leftrightarrow a^2-1\ge0\)

\(\Leftrightarrow\left(a-1\right)\left(a+1\right)\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a-1\ge0\\a+1\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}a-1\le0\\a+1\le0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a\ge1\\a\le-1\end{matrix}\right.\)

3.

\(4\left|x\right|-\sqrt{1+25x^2-10x}\)

\(=4\left|x\right|-\sqrt{\left(5x-1\right)^2}\)

\(=4\left|x\right|-\left|5x-1\right|\)

\(=4x-5x+1=1-x\)

4.

ĐKXĐ: \(x\ge0\)

\(-\sqrt{x}>-\sqrt{7}\)

\(\Leftrightarrow\sqrt{x}< \sqrt{7}\)

\(\Leftrightarrow\text{ }x< 7\)

Vậy bât phương trình có nghiệm \(0\le x< 7\)

5.

\(\sqrt{5-2\sqrt{6}}=\sqrt{2-2\sqrt{2}.\sqrt{3}+3}\)

\(=\sqrt{\left(\sqrt{2}-\sqrt{3}\right)^2}\)

\(=\sqrt{3}-\sqrt{2}\)

6.

\(\left|x\right|-\sqrt{1-2x+x^2}\)

\(=\left|x\right|-\sqrt{\left(1-x\right)^2}\)

\(=\left|x\right|-\left|x-1\right|\)

\(=x-x+1=1\)

25 tháng 10 2020

Bài 3: \(3\left(\sqrt{2x^2+1}-1\right)=x\left(1+3x+8\sqrt{2x^2+1}\right)\)

\(\Leftrightarrow\left(3-8x\right)\sqrt{2x^2+1}=3x^2+x+3\)

\(\Rightarrow\left(3-8x\right)^2\left(2x^2+1\right)=\left(3x^2+x+3\right)^2\)

\(\Leftrightarrow119x^4-102x^3+63x^2-54x=0\)

\(\Leftrightarrow x\left(7x-6\right)\left(17x^2+9\right)=0\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{6}{7}\end{cases}}\)

Thử lại, ta nhận được \(x=0\)là nghiệm duy nhất của phương trình

17 tháng 6 2019

\(a,\sqrt{\left(\sqrt{x}-\sqrt{y}\right)^2\left(\sqrt{x}+\sqrt{y}\right)^2}=\left|\sqrt{x}-\sqrt{y}\right|\left(\sqrt{x}+\sqrt{y}\right)\)

                                                                                \(=\left(\sqrt{y}-\sqrt{x}\right)\left(\sqrt{x}+\sqrt{y}\right)\)

                                                                               \(=y-x\)

\(b,\frac{3-\sqrt{x}}{x-9}=\frac{3-\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=-\frac{1}{\sqrt{x}+3}\)

\(c,\frac{x-5\sqrt{x}+6}{\sqrt{x}-3}=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}{\sqrt{x}-3}=\sqrt{x}-2\)

\(d,6-2x-\sqrt{9-6x+x^2}=6-2x-\sqrt{\left(3-x\right)^2}=6-2x-3+x=3-x\)

17 tháng 6 2019

\(a,\)\(\sqrt{\left(\sqrt{x}-\sqrt{y}\right)^2\left(\sqrt{x}+\sqrt{y}\right)^2}\)

\(=|\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)|\)

\(=|\sqrt{x}^2-\sqrt{y}^2|\)

\(=|x-y|\)

Vì \(x\le y\)\(\Rightarrow x-y\ge0\)

\(\Rightarrow|x-y|=x-y\)

24 tháng 8 2020

Lần sau đăng tách ra

24 tháng 8 2020

Cảm ơn bạn nhiều

26 tháng 7 2017

1. Áp dụng BĐT Bunhiakovski

a)  \(\sqrt{x-2}+\sqrt{4-x}=\sqrt{\left(\sqrt{x-2}.1+\sqrt{4-x}.1\right)^2}\le\sqrt{\left(1^2+1^2\right)\left(x-2+4-x\right)}=2\)

Đẳng thức xảy ra  \(\Leftrightarrow\)  \(\sqrt{x-2}=\sqrt{4-x}\)  \(\Leftrightarrow\)  \(x=3\)

b)  \(\sqrt{6-x}+\sqrt{x+2}=\sqrt{\left(\sqrt{6-x}.1+\sqrt{x+2}.1\right)^2}\le\sqrt{\left(1^2+1^2\right)\left(6-x+x+2\right)}=4\)

Đẳng thức xảy ra  \(\Leftrightarrow\)  \(\sqrt{6-x}=\sqrt{x+2}\)  \(\Leftrightarrow\)  \(x=2\)

c)  \(\sqrt{x}+\sqrt{2-x}=\sqrt{\left(\sqrt{x}.1+\sqrt{2-x}.1\right)^2}\le\sqrt{\left(1^2+1^2\right)\left(x+2-x\right)}=2\)

Đẳng thức xảy ra  \(\Leftrightarrow\)  \(\sqrt{x}=\sqrt{2-x}\)  \(\Leftrightarrow\)  \(x=1\)

24 tháng 7 2019

1.Điều kiện xđ \(x\ge2,x\le4\)

Từ ĐKXĐ ta có 

\(x\ge2\Leftrightarrow x-2\ge0\Leftrightarrow\sqrt{x-2}\ge0\left(1\right)\)

\(x\le4\Leftrightarrow4-x\ge0\Leftrightarrow\sqrt{4-x}\ge0\left(2\right)\)

Từ (1),(2) cộng vế theo vế ta có: 

\(\sqrt{x-2}+\sqrt{4-x}\ge0+0=0\)