K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 6 2019

\(a,\sqrt{\left(\sqrt{x}-\sqrt{y}\right)^2\left(\sqrt{x}+\sqrt{y}\right)^2}=\left|\sqrt{x}-\sqrt{y}\right|\left(\sqrt{x}+\sqrt{y}\right)\)

                                                                                \(=\left(\sqrt{y}-\sqrt{x}\right)\left(\sqrt{x}+\sqrt{y}\right)\)

                                                                               \(=y-x\)

\(b,\frac{3-\sqrt{x}}{x-9}=\frac{3-\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=-\frac{1}{\sqrt{x}+3}\)

\(c,\frac{x-5\sqrt{x}+6}{\sqrt{x}-3}=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}{\sqrt{x}-3}=\sqrt{x}-2\)

\(d,6-2x-\sqrt{9-6x+x^2}=6-2x-\sqrt{\left(3-x\right)^2}=6-2x-3+x=3-x\)

17 tháng 6 2019

\(a,\)\(\sqrt{\left(\sqrt{x}-\sqrt{y}\right)^2\left(\sqrt{x}+\sqrt{y}\right)^2}\)

\(=|\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)|\)

\(=|\sqrt{x}^2-\sqrt{y}^2|\)

\(=|x-y|\)

Vì \(x\le y\)\(\Rightarrow x-y\ge0\)

\(\Rightarrow|x-y|=x-y\)

21 tháng 6 2019

\(B=\frac{9-x}{\sqrt{x}+3}-\frac{x-6\sqrt{x}+9}{\sqrt{x}-3}-6\)(đk: x ≥ 0 và x ≠ 9)

\(B=\frac{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}{\sqrt{x}+3}-\frac{\left(\sqrt{x}-3\right)^2}{\sqrt{x}-3}-6\)

\(B=\left(3-\sqrt{x}\right)-\left(\sqrt{x}-3\right)-6\)

\(B=3-\sqrt{x}-\sqrt{x}+3-6\)

\(B=-2\sqrt{x}\)

21 tháng 6 2019

\(A=\frac{\sqrt{x}}{\sqrt{x}-6}-\frac{3}{\sqrt{x}+6}+\frac{x}{36-x}\)(đk: x ≥ 0 và x ≠ 36)

\(=\frac{\sqrt{x}}{\sqrt{x}-6}-\frac{3}{\sqrt{x}+6}-\frac{x}{x-36}\)

\(=\frac{\sqrt{x}}{\sqrt{x}-6}-\frac{3}{\sqrt{x}+6}-\frac{x}{x-36}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}+6\right)-3\left(\sqrt{x-6}\right)-x}{(\sqrt{x}-6)\left(\sqrt{x}+6\right)}\)

\(=\frac{x+6\sqrt{x}-3\sqrt{x}+18-x}{(\sqrt{x}-6)\left(\sqrt{x}+6\right)}\)

\(=\frac{3\sqrt{x}+18}{(\sqrt{x}-6)\left(\sqrt{x}+6\right)}\)

\(=\frac{3(\sqrt{x}+6)}{(\sqrt{x}-6)\left(\sqrt{x}+6\right)}\)

\(=\frac{3}{\sqrt{x}-6}\)

NV
25 tháng 5 2019

\(A=\left|1-x\right|-1=1-x-1=-x\)

\(B=\frac{3-\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=-\sqrt{x}-3\)

\(C=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}{\sqrt{x}-3}=\sqrt{x}-2\)

\(D=\sqrt{\left(x-1\right)^2}-x=\left|x-1\right|-x=\left[{}\begin{matrix}-1\left(x\ge1\right)\\1-2x\left(x< 1\right)\end{matrix}\right.\)

17 tháng 7 2019

\(% MathType!MTEF!2!1!+- % feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeaacaGaaiaabeqaamaabaabaaGceaqabeaacaaI2a % GaeyOeI0IaaGOmaiaadIhacqGHsisldaGcaaqaaiaaiMdacqGHsisl % caaI2aGaamiEaiabgUcaRiaadIhadaahaaWcbeqaaiaaikdaaaaabe % aakmaabmaabaGaamiEaiabgYda8iaaiodaaiaawIcacaGLPaaaaeaa % cqGH9aqpcaaI2aGaeyOeI0IaaGOmaiaadIhacqGHsisldaGcaaqaam % aabmaabaGaaG4maiabgkHiTiaadIhaaiaawIcacaGLPaaadaahaaWc % beqaaiaaikdaaaaabeaaaOqaaiabg2da9iaaiAdacqGHsislcaaIYa % GaamiEaiabgkHiTmaaemaabaGaaG4maiabgkHiTiaadIhaaiaawEa7 % caGLiWoaaeaacqGH9aqpcaaI2aGaeyOeI0IaaGOmaiaadIhacqGHRa % WkcaaIZaGaeyOeI0IaamiEaaqaaiabg2da9iaaiMdacqGHsislcaaI % ZaGaamiEaaqaamaalaaabaGaaG4maiabgkHiTmaakaaabaGaamiEaa % WcbeaaaOqaaiaadIhacqGHsislcaaI5aaaamaabmaabaGaamiEaiab % gwMiZkaaicdacaGGSaGaamiEaiabgcMi5kaaiMdaaiaawIcacaGLPa % aaaeaacqGH9aqpdaWcaaqaaiabgkHiTmaabmaabaWaaOaaaeaacaWG % 4baaleqaaOGaeyOeI0IaaG4maaGaayjkaiaawMcaaaqaamaabmaaba % WaaOaaaeaacaWG4baaleqaaOGaeyOeI0IaaG4maaGaayjkaiaawMca % amaabmaabaWaaOaaaeaacaWG4baaleqaaOGaey4kaSIaaG4maaGaay % jkaiaawMcaaaaaaeaacqGH9aqpdaWcaaqaaiabgkHiTiaaigdaaeaa % daGcaaqaaiaadIhaaSqabaGccqGHRaWkcaaIZaaaaaqaamaalaaaba % GaamiEaiabgkHiTiaaiwdadaGcaaqaaiaadIhaaSqabaGccqGHRaWk % caaI2aaabaWaaOaaaeaacaWG4baaleqaaOGaeyOeI0IaaG4maaaada % qadaqaaiaadIhacqGHLjYScaaIWaGaaiilaiaadIhacqGHGjsUcaaI % 5aaacaGLOaGaayzkaaaabaGaeyypa0ZaaSaaaeaacaWG4bGaeyOeI0 % IaaGOmamaakaaabaGaamiEaaWcbeaakiabgkHiTiaaiodadaGcaaqa % aiaadIhaaSqabaGccqGHRaWkcaaI2aaabaWaaOaaaeaacaWG4baale % qaaOGaeyOeI0IaaG4maaaaaeaacqGH9aqpdaWcaaqaamaakaaabaGa % amiEaaWcbeaakmaabmaabaWaaOaaaeaacaWG4baaleqaaOGaeyOeI0 % IaaGOmaaGaayjkaiaawMcaaiabgkHiTiaaiodadaqadaqaamaakaaa % baGaamiEaaWcbeaakiabgkHiTiaaikdaaiaawIcacaGLPaaaaeaada % GcaaqaaiaadIhaaSqabaGccqGHsislcaaIZaaaaaqaaiabg2da9maa % laaabaWaaeWaaeaadaGcaaqaaiaadIhaaSqabaGccqGHsislcaaIYa % aacaGLOaGaayzkaaWaaeWaaeaadaGcaaqaaiaadIhaaSqabaGccqGH % sislcaaIZaaacaGLOaGaayzkaaaabaWaaOaaaeaacaWG4baaleqaaO % GaeyOeI0IaaG4maaaaaeaacqGH9aqpdaGcaaqaaiaadIhaaSqabaGc % cqGHsislcaaIYaaaaaa!C78C! \begin{array}{l} 6 - 2x - \sqrt {9 - 6x + {x^2}} \left( {x < 3} \right)\\ = 6 - 2x - \sqrt {{{\left( {3 - x} \right)}^2}} \\ = 6 - 2x - \left| {3 - x} \right|\\ = 6 - 2x + 3 - x\\ = 9 - 3x\\ \dfrac{{3 - \sqrt x }}{{x - 9}}\left( {x \ge 0,x \ne 9} \right)\\ = \dfrac{{ - \left( {\sqrt x - 3} \right)}}{{\left( {\sqrt x - 3} \right)\left( {\sqrt x + 3} \right)}}\\ = \dfrac{{ - 1}}{{\sqrt x + 3}}\\ \dfrac{{x - 5\sqrt x + 6}}{{\sqrt x - 3}}\left( {x \ge 0,x \ne 9} \right)\\ = \dfrac{{x - 2\sqrt x - 3\sqrt x + 6}}{{\sqrt x - 3}}\\ = \dfrac{{\sqrt x \left( {\sqrt x - 2} \right) - 3\left( {\sqrt x - 2} \right)}}{{\sqrt x - 3}}\\ = \dfrac{{\left( {\sqrt x - 2} \right)\left( {\sqrt x - 3} \right)}}{{\sqrt x - 3}}\\ = \sqrt x - 2 \end{array}\)

17 tháng 7 2019

\(6-2x-\sqrt{9-6x+x^2}\)

= \(6-2x-\sqrt{\left(3-x\right)^2}\)

= \(\left\{{}\begin{matrix}6-2x-3+x\\6-2x+3-x\end{matrix}\right.\)

= \(\left\{{}\begin{matrix}3-x\\9-3x\end{matrix}\right.\)

\(\frac{3-\sqrt{x}}{x-9}\)

=\(\frac{-\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(x-3\right)}\)

= \(\frac{-1}{\sqrt{x}+3}\)

AH
Akai Haruma
Giáo viên
5 tháng 7 2020

Lời giải:

a) \(A=4\sqrt{x}-\frac{(\sqrt{x}+3)^2(\sqrt{x}-3)}{x-9}=4\sqrt{x}-\frac{(\sqrt{x}+3)(x-9)}{x-9}=4\sqrt{x}-(\sqrt{x}+3)\)

\(=3\sqrt{x}-3\)

b)

\(B=\frac{\sqrt{9x^2+12x+4}}{3x+2}=\frac{\sqrt{(3x)^2+2.3x.2+2^2}}{3x+2}=\frac{\sqrt{(3x+2)^2}}{3x+2}=\frac{|3x+2|}{3x+2}\)

\(B=1\) nếu $x>\frac{-2}{3}$

$B=-1$ nếu $x< \frac{-2}{3}$

23 tháng 8 2019

a, \(A=\sqrt{\left(1-x\right)^2}-1=\left|1-x\right|-1=1-x-1\)(vì x<1)

<=> A=\(-x\)

b,B=\(\frac{3-\sqrt{x}}{x-9}\left(x\ge0,x\ne9\right)\)

=\(\frac{-\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=-\frac{1}{\sqrt{x}+3}\)

Vậy \(B=-\frac{1}{\sqrt{x}+3}\)

c, C=\(\frac{x-5\sqrt{x}+6}{\sqrt{x}-3}\left(x\ge0,x\ne9\right)\)

=\(\frac{x-2\sqrt{x}-3\sqrt{x}+6}{\sqrt{x}-3}\)=\(\frac{\sqrt{x}\left(\sqrt{x}-2\right)-3\left(\sqrt{x}-2\right)}{\sqrt{x}-3}\)=\(\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}{\sqrt{x}-3}\)=\(\sqrt{x}-2\)

Vậy C= \(\sqrt{x}-2\)

d, D=\(5-3x-\sqrt{25-10x+x^2}\left(x< 5\right)\)

= \(5-3x-\sqrt{\left(5-x\right)^2}\)=\(5-3x-\left|5-x\right|\)=\(5-3x-5+x\) (vì x<5)=-2x

Vậy D=-2x

e, E=\(\sqrt{3a}.\sqrt{27a}\) (đk \(a\ge0\))

=\(\sqrt{3.27.a^2}=\sqrt{3^4}.a=9a\)

Vậy E=9a

f, F=\(\frac{1}{a-1}\sqrt{9\left(a-1\right)^2}\) (đk :a>1)

= \(\frac{1}{a-1}.3\left|a-1\right|\)=\(\frac{1}{a-1}.3\left(a-1\right)\) (vì a>1)=3

Vậy F=3

12 tháng 12 2019

a)\(M=\left(\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{\sqrt{x}+2}{3-\sqrt{x}}+\frac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right):\left(1-\frac{\sqrt{x}}{\sqrt{x}+1}\right)\)

\(=\left(\frac{x-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{x-4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}+\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right):\left(\frac{\sqrt{x}+1-\sqrt{x}}{\sqrt{x}+1}\right)\)

\(=\frac{\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}.\left(\sqrt{x}+1\right)\)

\(=\frac{\sqrt{x}+1}{\sqrt{x}-2}\)

b)\(\frac{1}{M}=\frac{\sqrt{x}-2}{\sqrt{x}+1}=\frac{\sqrt{x}+1-3}{\sqrt{x}+1}=1-\frac{3}{\sqrt{x}+1}\)

Ta có: \(\sqrt{x}\ge0,\forall x\ge0\)

\(\Leftrightarrow\sqrt{x}+1\ge1\)

\(\Leftrightarrow\frac{1}{\sqrt{x}+1}\le1\)

\(\Leftrightarrow\frac{3}{\sqrt{x}+1}\le3\)

\(\Leftrightarrow-\frac{3}{\sqrt{x}+1}\ge-3\)

\(\Leftrightarrow1-\frac{3}{\sqrt{x}+1}\ge-2\)

Dấu "=" xảy ra khi x=0

Vậy \(Min_{\frac{1}{M}}=-2\) khi x=0

13 tháng 12 2019

Thankssss!!