K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2021

a) Để y là hsbn thì \(2-m\ne0\Leftrightarrow m\ne2\)

b) Để y là hsnb thì \(2-m< 0\Leftrightarrow m>2\)

    Để y là hsđb thì \(2-m>0\Leftrightarrow m< 2\)

c) Vì đths \(\left(d\right):y=\left(2-m\right)x+m-1\)đi qua A(2;1) nên ta thay x = 2; y = 1 vào phương trình đường thẳng (d), ta có:

\(1=2\left(2-m\right)+m-1\Leftrightarrow1=4-2m+m-1\Leftrightarrow2m-m-3=-1\Leftrightarrow m=2\)

Vậy để đths \(\left(d\right):y=\left(2-m\right)x+m-1\)đi qua điểm A(2;1) thì m = 2

d) Gọi điểm cố định mà đths \(\left(d\right):y=\left(2-m\right)x+m-2\)luôn đi qua với mọi m là B(x0;y0)

Thay x = x0; y = y0 vào phương trình đường thẳng (d), ta có:

\(y_0=\left(2-m\right)x_0+m-2\)\(\Leftrightarrow\)\(y_0=2x_0-mx_0+m-1\)\(\Leftrightarrow\)\(mx_0-m-2x_0+y_0+1=0\)

\(\Leftrightarrow m\left(x_0-1\right)-\left(2x_0-y_0-1\right)=0\)(*)

Vì phương trình (*) luôn phải có nghiệm đúng với mọi m nên (*) \(\Leftrightarrow\hept{\begin{cases}x_0-1=0\\2x_0-y_0-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x_0=1\\2.1-y_0=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x_0=1\\y_0=1\end{cases}}\)

Vậy B(1;1) là điểm cố định mà đths \(y=\left(2-m\right)x+m-1\)luôn đi qua với mọi m.

Câu 2 bạn tự vẽ được mà.

3 tháng 10 2021

\(1,\\ a,=\dfrac{\sqrt{\left(\sqrt{a}-\sqrt{b}\right)^2}}{\sqrt{\left(\sqrt{a}-\sqrt{b}\right)}}=\sqrt{\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}}=\sqrt{\sqrt{a}-\sqrt{b}}\\ b,=\dfrac{\sqrt{\left(\sqrt{x}-\sqrt{3}\right)\left(\sqrt{x}+\sqrt{3}\right)}}{\sqrt{\sqrt{x}+\sqrt{3}}}\cdot\dfrac{\sqrt{3}}{\sqrt{\sqrt{x}-\sqrt{3}}}\\ =\sqrt{3}\\ c,=2y^2\cdot\dfrac{x^2}{\left|2y\right|}=\dfrac{2x^2y^2}{-2y}=-x^2y\\ d,=5xy\cdot\dfrac{\left|5x\right|}{y^2}=\dfrac{-25x^2y}{y^2}=\dfrac{-25x^2}{y}\)

 

Bài 2: 

a: Ta có: \(A=\left(3\sqrt{18}+2\sqrt{50}-4\sqrt{72}\right):8\sqrt{2}\)

\(=\left(9\sqrt{2}+10\sqrt{2}-24\sqrt{2}\right):8\sqrt{2}\)

\(=\dfrac{-5\sqrt{2}}{8\sqrt{2}}=-\dfrac{5}{8}\)

b: Ta có: \(B=\left(-4\sqrt{20}+5\sqrt{500}-3\sqrt{45}\right):\sqrt{5}\)

\(=\left(-8\sqrt{5}+50\sqrt{5}-9\sqrt{5}\right):\sqrt{5}\)

\(=49\)

21 tháng 10 2021

Bài 3: 

1: Ta có: \(P=\dfrac{\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2\sqrt{x}}{\sqrt{x}+2}-\dfrac{5\sqrt{x}+2}{x-4}\)

\(=\dfrac{x+3\sqrt{x}+2+2x-4\sqrt{x}-5\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{\sqrt{x}}{\sqrt{x}+2}\)

19 tháng 12 2020

\(1+\sqrt{3x+1}=3x\)

⇔ \(\sqrt{3x+1}=3x-1\)

ĐKXĐ : x ≥ 1/3

Bình phương hai vế

⇔ 3x + 1 = 9x2 - 6x + 1

⇔ 9x2 - 6x + 1 - 3x - 1 = 0

⇔ 9x2 - 9x = 0

⇔ 9x( x - 1 ) = 0

⇔ 9x = 0 hoặc x - 1 = 0

⇔ x = 0 ( ktm ) hoặc x = 1 ( tm )

Vậy x = 1

1 tháng 7 2017

\(1+\sqrt{3x+1}=3x\left(ĐKXĐ:x\ge-\frac{1}{3}\right)\)

\(\sqrt{3x+1}=3x-1\)

\(\left(\sqrt{3x+1}\right)^2=\left(3x-1\right)^2\)

\(3x+1=9x^2-6x+1\)

\(9x^2-9x=0\)

\(9x\left(x-1\right)=0\)

        \(\Rightarrow\orbr{\begin{cases}9x=0\\x-1=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\x=1\end{cases}}\)

Vd1: 

d) Ta có: \(\sqrt{2}\left(x-1\right)-\sqrt{50}=0\)

\(\Leftrightarrow\sqrt{2}\left(x-1-5\right)=0\)

\(\Leftrightarrow x=6\)

24 tháng 12 2020

X=12

 

a: góc ASB=1/2*180=90 độ=góc ABM

b: ON vuông góc AS

BS vuông góc SA

=>ON//BS

c: góc OIM+góc OBM=180 độ

=>OIMB nội tiếp

NV
10 tháng 7 2021

\(M=\left(\dfrac{\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right).\dfrac{\sqrt{x}-2}{2}\)

\(=\dfrac{2\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{2\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\)

2. Ta có: 

\(\sqrt{x}>0\Rightarrow\dfrac{\sqrt{x}+1}{\sqrt{x}+2}>0\) hay \(M>0\)

Lại có: \(M=\dfrac{\sqrt{x}+2-1}{\sqrt{x}+2}=1-\dfrac{1}{\sqrt{x}+2}< 1\)

\(\Rightarrow0< M< 1\Rightarrow M>M^2\)

1) Ta có: \(M=\left(\dfrac{\sqrt{x}}{x-4}+\dfrac{1}{\sqrt{x}-2}\right)\cdot\dfrac{\sqrt{x}-2}{2}\)

\(=\dfrac{\sqrt{x}+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{\sqrt{x}-2}{2}\)

\(=\dfrac{2\sqrt{x}+2}{2\left(\sqrt{x}+2\right)}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\)