K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 5 2022

\(\dfrac{1}{2x_1+x_2-\dfrac{1}{3}}+\dfrac{1}{x_1+2x_2-\dfrac{1}{3}}\)

\(=\dfrac{x_1+2x_2-\dfrac{1}{2}+2x_1+x_2-\dfrac{1}{3}}{\left(2x_1+x_2-\dfrac{1}{3}\right)\left(x_1+2x_2-\dfrac{1}{3}\right)}\)

\(=\dfrac{3x_1+3x_2-\dfrac{2}{3}}{2x_1^2+4x_1x_2-\dfrac{2}{3}x_1+x_1x_2+2x_2^2-\dfrac{1}{3}x_2-\dfrac{1}{3}x_1-\dfrac{2}{3}x_2+\dfrac{1}{9}}\)

\(=\dfrac{3x_1+3x_2-\dfrac{2}{3}}{2x_1^2+5x_1x_2-x_1+2x_2^2-x_2+\dfrac{1}{9}}\)

\(=\dfrac{3\left(x_1+x_2-\dfrac{2}{3}\right)}{2\left(x_1^2+x_2^2\right)-\left(x_1+x_2\right)+5x_1x_2+\dfrac{1}{9}}\)

\(=\dfrac{3\left(x_1+x_2-\dfrac{2}{3}\right)}{2\left[\left(x_1+x_2\right)^2-2x_1x_2\right]-\left(x_1+x_2\right)+5x_1x_2+\dfrac{1}{9}}\)

 

Áp dụng định lí Vi-ét : \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{4}{12}=\dfrac{1}{3}\\x_1x_2=\dfrac{c}{a}=-\dfrac{3}{12}=-\dfrac{1}{4}\end{matrix}\right.\)

 

Ta được : \(\dfrac{3\left(\dfrac{1}{3}-\dfrac{2}{3}\right)}{2\left[\left(\dfrac{1}{3}\right)^2-2\cdot\left(-\dfrac{1}{4}\right)\right]-\dfrac{1}{3}+5\cdot\left(-\dfrac{1}{4}\right)+\dfrac{1}{9}}=4\)

 

Câu 1: 

1: Ta có: \(A=3\sqrt{25}-\sqrt{36}-\sqrt{64}\)

\(=3\cdot5-6-8\)

\(=15-6-8=1\)

Câu I:

2: Ta có: \(B=\dfrac{\sqrt{x}}{\sqrt{x}+1}+\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{x+1}{x-1}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\dfrac{x+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{x-\sqrt{x}+x+\sqrt{x}-x-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{x-1}{x-1}=1\)

26 tháng 5 2021

làm giúp e bài 4 câu b với ạ

 

NV
27 tháng 7 2021

2.1

ĐKXĐ: \(x\ge-\dfrac{1}{16}\)

\(x^2-x-20-2\left(\sqrt{16x+1}-9\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(x+4\right)-\dfrac{32\left(x-5\right)}{\sqrt{16x+1}+9}=0\)

\(\Leftrightarrow\left(x-5\right)\left(x+4-\dfrac{32}{\sqrt{16x+1}+9}\right)=0\) (1)

Do \(x\ge-\dfrac{1}{16}\Rightarrow\left\{{}\begin{matrix}\dfrac{32}{\sqrt{16x+1}+9}< \dfrac{32}{9}\\x+4\ge-\dfrac{1}{16}+4=\dfrac{63}{16}>\dfrac{32}{9}\end{matrix}\right.\)

\(\Rightarrow x+4-\dfrac{32}{\sqrt{16x+1}+9}>0\)

Nên (1) tương đương:

\(x-5=0\)

\(\Leftrightarrow x=5\)

Câu 2.2, 2.3 đề lỗi không dịch được

12 tháng 10 2021

\(\left(3\sqrt{7}\right)^2=63>28=\left(\sqrt{28}\right)^2\) hoặc \(3\sqrt{7}>2\sqrt{7}=\sqrt{28}\)

12 tháng 10 2021

C1: $\sqrt{28}=\sqrt{4.7}=2\sqrt 7$

Ta có: $3>2$

$\Leftrightarrow 3\sqrt 7>3\sqrt 7$ hay $3\sqrt 7>\sqrt{28}$

C2: $3\sqrt{7}=\sqrt{63}$

Ta có: $63>28$

$\Leftrightarrow\sqrt{63}>\sqrt{28}$ hay $3\sqrt 7>\sqrt{28}$

12 tháng 10 2021

Câu 2: 

Ta có: \(\sqrt{x^2-4x+4}=x-1\)

\(\Leftrightarrow2-x=x-1\left(x< 2\right)\)

\(\Leftrightarrow-2x=-3\)

hay \(x=\dfrac{3}{2}\left(tm\right)\)

26 tháng 1 2022

Tách nhỏ câu hỏi ra bạn

d: \(\Leftrightarrow x^2-x-1=x+2\)

\(\Leftrightarrow x^2-2x-3=0\)

=>(x-3)(x+1)=0

=>x=3 hoặc x=-1

e: \(\Leftrightarrow x^2-x-2+x-1=3x+4\)

\(\Leftrightarrow x^2-3-3x-4=0\)

\(\Leftrightarrow x^2-3x-7=0\)

\(\text{Δ}=\left(-3\right)^2-4\cdot1\cdot\left(-7\right)=37\)

Vì Δ>0 nên pt có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{3-\sqrt{37}}{2}\\x_2=\dfrac{3+\sqrt{37}}{2}\end{matrix}\right.\)

Bài 1: 

Vì (d)//y=-2x+1 nên a=-2

Vậy: y=-2x+b

Thay x=1 và y=2 vào (d),ta được:

b-2=2

hay b=4