Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4x=3y, 5y=3z=>\(\frac{x}{3}=\frac{y}{4};\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{x}{9}=\frac{y}{12};\frac{y}{12}=\frac{z}{20}\Rightarrow\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\)
áp dụng tính chất của dãy tỉ số bằng nhau ta có;
\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)
suy ra:
\(\frac{x}{9}=3\Rightarrow x=27\)
\(\frac{y}{12}=3\Rightarrow y=36\)
\(\frac{z}{20}=3\Rightarrow z=60\)
4x = 3y => \(\frac{x}{3}=\frac{y}{4}\) => \(\frac{x}{9}=\frac{y}{12}\) (1)
5y = 3z => \(\frac{y}{3}=\frac{z}{5}\) => \(\frac{y}{12}=\frac{z}{20}\) (2)
(1);(2) => \(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2x-3y+z}{2.9-3.12+20}=\frac{6}{2}=3\)
=> x = 3.9 = 27; b = 3.12 = 36; c = 3.20 = 60
GTNN (A)=3178+2017 khi x=0 ko co GTLN
GTLN(b)=2017 khi x=-3 va y=5 khong co GTNN
GTNN(c)=2018 khi x=-1 va y=5 khong co GTLN
neu can giai thich thi h
ko thi thoi
em cũng muốn làm phước giúp chị lắm chứ nhưng em mới ở lớp 6 thui
Áp dụng định lí Pytago, Ta có:
x2=122+52=144+25=169
=> 132=x2 => x=13.
Hình b) ta có:
x2= 12 + 22 = 1+4=5
x= √5
Hình c)
Theo định lí pytago:
292=212+x2
nên x2=292-212
= 841-441=400=202
=>x=20
Hình d)
x2=( √7)2+32=7+9=16=42
x=4.
a)
f(x) + h(x) = g(x)
\( \Rightarrow x^4 - 3x^2 + x-1 \) + h(x) = \(x^4 - x^3 + x^2 +5\)
\(\Rightarrow \) h(x) = \(( x^4 - x^3 + x^2 + 5 ) - ( x^4 - 3x^2 + x-1 )\)
\(\Rightarrow \) h(x) = \(x^4 - x^3 + x^2 + 5 - x^4 + 3x^2 - x +1\)
\(\Rightarrow\) h(x) = \(( x^4-x^4 ) + ( -x^3 ) + ( x^2 + 3x^2 ) + ( 5+1)\)
\(\Rightarrow\) h(x) = \(4x^2 - x^3 +6\)
Vậy h(x) = \(4x^2 - x^3 +6\)
b) f(x) - h(x) = g(x)
\(\Rightarrow \) \(x^4 - 3x^2 +x-1\) - h(x) = \(x^4 - x^3 + x^2-1\)
\(\Rightarrow\) h(x) = \((x^4 - 3x^2 +x-1)\) - \((x^4 - x^3 + x^2 +5 )\)
\(\Rightarrow\) h(x) = \(x^4 - 3x^2 + x-1 - x^4 + x^3 - x^2 - 5\)
\(\Rightarrow\) h(x) = \(( x^4-x^4 ) + x^3 + ( -3x^2 - x^2 ) + ( -1-5 )\)
\(\Rightarrow\) h(x) = \(x^3 - 4x^2 -6\)
Vậy h(x) = \(x^3 - 4x^2 -6\)