K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1:

loading...

a: Xét ΔDEI và ΔDFI có

DE=DF

EI=FI

DI chung

Do đó: ΔDEI=ΔDFI

b: Ta có: ΔDEI=ΔDFI

=>\(\widehat{DIE}=\widehat{DIF}\)

mà \(\widehat{DIE}+\widehat{DIF}=180^0\)(hai góc kề bù)

nên \(\widehat{DIE}=\widehat{DIF}=\dfrac{180^0}{2}=90^0\)

=>DI\(\perp\)EF

ΔDEI=ΔDFI

=>\(\widehat{EDI}=\widehat{FDI}\)

=>DI là phân giác của góc EDF

c: Xét ΔIKE vuông tại K và ΔIHF vuông tại H có

IE=IF

\(\widehat{IEK}=\widehat{IFH}\)

Do đó: ΔIKE=ΔIHF

d: ta có: ΔIKE=ΔIHF

=>KE=HF và IK=IH

Ta có: DK+KE=DE

DH+HF=DF

mà DE=DF và KE=HF

nên DK=DH

=>D nằm trên đường trung trực của HK(1)

Ta có: IK=IH

=>I nằm trên đường trung trực của HK(2)

Từ (1),(2) suy ra DI là đường trung trực của HK

=>DI\(\perp\)HK

Xét ΔDEF có \(\dfrac{DK}{DE}=\dfrac{DH}{DF}\)

nên KH//EF

Bài 2:

loading...

a: ΔABC vuông tại A

=>\(\widehat{ABC}+\widehat{ACB}=90^0\)

=>\(\widehat{ABC}=90^0-30^0=60^0\)

Xét ΔABD có

AH là đường cao

AH là đường trung tuyến

Do đó: ΔABD cân tại A

Xét ΔABD cân tại A có \(\widehat{ABD}=60^0\)

nên ΔABD đều

b: ΔABD đều

=>\(\widehat{BAD}=\widehat{BDA}=60^0\) và AB=BD=AD

\(\widehat{BAD}+\widehat{CAD}=\widehat{BAC}\)

=>\(\widehat{CAD}+60^0=90^0\)

=>\(\widehat{CAD}=30^0\)

Xét ΔDCA có \(\widehat{DCA}=\widehat{DAC}\)

nên ΔDAC cân tại D

=>DA=DC

c: Xét ΔDEC vuông tại E và ΔDHA vuông tại H có

DC=DA

\(\widehat{EDC}=\widehat{HDA}\)

Do đó: ΔDEC=ΔDHA

=>AH=CE và DE=DH

d: Xét ΔDEH và ΔDAC có

\(\dfrac{DE}{DA}=\dfrac{DH}{DC}\)

\(\widehat{EDH}=\widehat{ADC}\)

Do đó: ΔDEH~ΔDAC

=>\(\widehat{DEH}=\widehat{DAC}\)

=>EH//AC

8 tháng 9 2016

đáp án đằng sau sách ấy

8 tháng 9 2016

là sao vậy bạn ?

16 tháng 3 2020

Câu hỏi của Xuân Phạm - Toán lớp 7 - Học toán với OnlineMath

a: Xét ΔBAD và ΔBMD có

BA=BM

góc ABD=góc MBD

BD chung

=>ΔBAD=ΔBMD

b: Xét ΔBME và ΔBAC có

góc BME=góc BAC

BM=BA

góc EBM chung

=>ΔBME=ΔBAC

=>BE=BC

=>ΔBEC cân tại B

1 tháng 5 2023

Cho em hỏi với ạ: Tại sao lại khẳng định được BA = BM thế ạ;-;?