Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\left(2x+7\right)^2=\left(x+3\right)^2\)
\(\Leftrightarrow\left(2x+7\right)^2-\left(x+3\right)^2=0\)
\(\Leftrightarrow\left(2x+7-x-3\right)\left(2x+7+x+3\right)=0\)
\(\Leftrightarrow\left(x+4\right)\cdot\left(3x+10\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\3x+10=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\3x=-10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=-\dfrac{10}{3}\end{matrix}\right.\)
Vậy: \(S=\left\{-4;-\dfrac{10}{3}\right\}\)
b) Ta có: \(\left(4x+14\right)^2=\left(7x+2\right)^2\)
\(\Leftrightarrow\left(4x+14\right)^2-\left(7x+2\right)^2=0\)
\(\Leftrightarrow\left(4x+14-7x-2\right)\left(4x+14+7x+2\right)=0\)
\(\Leftrightarrow\left(-3x+12\right)\left(11x+16\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-3x+12=0\\11x+16=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-3x=-12\\11x=-16\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-\dfrac{16}{11}\end{matrix}\right.\)Vậy: \(S=\left\{4;-\dfrac{16}{11}\right\}\)
(2x+7)2=(x+3)2
=>(2x+7)2-(x+3)2=0
=>(2x+7-x-3)(2x+7+x+3)=0
=>(x-4)(3x+10)=0
=>x-4=0 hoặc 3x+10=0
TH1:x-4=0=>x=4
TH2:3x+10=0=>x=-10/3
(4x+14)2=(7x+2)2
(4x+14)2-(7x+2)2=0
(4x+14-7x-2)(4x+14+7x+2)=0
(-3x+12)(11x+16)=0
TH1:-3x+12=0=>x=4
TH2:11x+16=0=>x=-16/11
a)\(x\left(x-3\right)-2x+6=0\)
\(\Leftrightarrow x\left(x-3\right)-2\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=3\end{cases}}\)
b)\(\left(3x-5\right)\left(5x-7\right)+\left(5x+1\right)\left(2-3x\right)=4\)
\(\Leftrightarrow15x^2-46x+35-15x^2+7x+2-4=0\)
\(\Leftrightarrow33-39x=0\Leftrightarrow33=39x\Leftrightarrow x=\frac{33}{39}\)
a) \(x\left(x-3\right)-2x+6=0\)
\(x\left(x-3\right)-2\left(x-3\right)=0\)
\(\left(x-3\right)\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\x-2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\x=2\end{cases}}}\)
b) \((3x-5)(5x-7)+(5x+1)(2-3x)=4\)
\(15x^2-46x+35+10x-15x^2+2-3x-4=0\)
\(33-39x=0\)
\(3\left(11-13x\right)=0\)
\(11-13x=0\)
\(13x=11\)
\(x=\frac{11}{13}\)
Bài 5:
a) \(x^2-xy+x-y\)
\(=\left(x^2-xy\right)+\left(x-y\right)\)
\(=x\left(x-y\right)+\left(x-y\right)\)
\(=\left(x+1\right)\left(x-y\right)\)
b) \(xz+yz+4x+4y\)
\(=\left(xz+yz\right)+\left(4x+4y\right)\)
\(=z\left(x+y\right)+4\left(x+y\right)\)
\(=\left(z+4\right)\left(x+y\right)\)
c) \(x^2-x-y^2+y\)
\(=\left(x^2-y^2\right)-\left(x-y\right)\)
\(=\left(x+y\right)\left(x-y\right)-\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y-1\right)\)
d) \(x^2+2x+2z-z^2\)
\(=\left(x^2-z^2\right)+\left(2x+2z\right)\)
\(=\left(x+z\right)\left(x-z\right)+2\left(x+z\right)\)
\(=\left(x+z\right)\left(x-z+2\right)\)
4.2:
a: x^2-x+1=x^2-x+1/4+3/4
=(x-1/2)^2+3/4>=3/4>0 với mọi x
=>x^2-x+1 ko có nghiệm
b: 3x-x^2-4
=-(x^2-3x+4)
=-(x^2-3x+9/4+7/4)
=-(x-3/2)^2-7/4<=-7/4<0 với mọi x
=>3x-x^2-4 ko có nghiệm
5:
a: x^2+y^2=25
x^2-y^2=7
=>x^2=(25+7)/2=16 và y^2=16-7=9
x^4+y^4=(x^2)^2+(y^2)^2
=16^2+9^2
=256+81
=337
b: x^2+y^2=(x+y)^2-2xy
=1^2-2*(-6)
=1+12=13
x^3+y^3=(x+y)^3-3xy(x+y)
=1^3-3*1*(-6)
=1+18=19
Bài 3:
a) Xét ΔABM vuông tại M và ΔACM vuông tại M có
AB=AC(ΔBAC cân tại A)
AM chung
Do đó: ΔABM=ΔACM(cạnh huyền-cạnh góc vuông)
Suy ra: BM=CM(hai cạnh tương ứng)
mà điểm M nằm giữa hai điểm B và C
nên M là trung điểm của BC
bài 5
Nhân phá tung ra ta có :
\(3x^2+2x+x^2+2x+1-4x^2+25=-12\Leftrightarrow4x=-38\Leftrightarrow x=-\frac{19}{2}\)
bài 6.
ta có : \(2n^2+5n+2-3=\left(2n+1\right)\left(n+2\right)-3\text{ chia hết cho }2n+1\)
Khi 3 chia hết cho 2n+1 hay \(2n+1\in\left\{\pm1,\pm3\right\}\Rightarrow n\in\left\{-2,-1,0,1\right\}\)
Bài 5.
\(x\left(3x+2\right)+\left(x+1\right)^2-\left(2x-5\right)\left(2x+5\right)=-12\)
\(\Leftrightarrow3x^2+2x+x^2+2x+1-4x^2+25=-12\)
\(\Leftrightarrow4x=-38\)
\(\Leftrightarrow x=-\frac{38}{5}\).
Bài 6.
\(\left(2n^2+5n-1\right)⋮\left(2n-1\right)\Leftrightarrow\left(4n^2+10n-2\right)⋮\left(2n-1\right)\)(1)
Có \(4n^2+10n-2=4n^2-4n+1+14n-7+4=\left(2n-1\right)^2+7\left(2n-1\right)+4\)
Do đó (1) tương đương với \(4⋮\left(2n-1\right)\Leftrightarrow2n-1\in\left\{-1,1\right\}\)(vì \(2n-1\)là số lẻ)
\(\Leftrightarrow n\in\left\{0,1\right\}\).