Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi 4 số nguyên dương đó là a,b,c,d ( a,b,c,d>0)
vì tổng cuả hai số bất kì chia hết cho 2 và tổng của 3 số bất ki chia hết cho 3
nên các số a,b,c,d khi chia cho 2 hoặc cho 3 thì phải có chung số dư
để a+b+c+d có giá trị nhỏ nhất thì a,b,c,d phải nhỏ nhất và chia hết cho 2 hoặc cho 3 dư 1
\(\Rightarrow a=1;b=7;c=13;d=19\)
vậy giá trị nhỏ nhất của tổng 4 số này là \(1+7+13+19=40\)
\(\Rightarrow a+b+c+d=40\)
a/b=c/d =>a/c=b/d
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)
\(\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\left(\frac{a+b}{c+d}\right)^2\)\(\Leftrightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\left(\frac{a+b}{c+d}\right)^2\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\left(\frac{a+b}{b+d}\right)^2=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\)
\(\Rightarrow dpcm\)
ông đi qua bà đi lại nếu ai tốt bụng cho con xin đi các ông các bà ai thương cho con với
lạy ông đi bà đi lại cho xin