Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Khử mẫu biểu thức chứa căn ms đúng
\(\sqrt{\frac{\left(1+\sqrt{2}\right)^3}{27}}=\sqrt{\frac{\left(1+\sqrt{2}\right)^2\cdot\left(1+\sqrt{2}\right)}{3^2\cdot3}}=\frac{1+\sqrt{2}}{3}\cdot\sqrt{\frac{1+\sqrt{2}}{3}}\)
\(=\frac{1+\sqrt{2}}{3}\cdot\frac{\sqrt{3\cdot\left(1+\sqrt{2}\right)}}{3}=\frac{1+\sqrt{2}}{9}\cdot\sqrt{3+3\sqrt{2}}\)
Lời giải:
\(\sqrt{\frac{(1+\sqrt{2})^3}{27}}=\sqrt{\frac{(1+\sqrt{2})^3}{3^3}}=\sqrt{\frac{3(1+\sqrt{2})^3}{3^4}}\)
\(=\frac{(1+\sqrt{2})\sqrt{3+3\sqrt{2}}}{9}\)
\(ab\sqrt{\frac{1}{a}+\frac{1}{b}}=\sqrt{(ab)^2(\frac{1}{a}+\frac{1}{b})}=\sqrt{ab^2+a^2b}\)
Lời giải:
Ta có:
\(\frac{\sqrt{3}+\sqrt{5}}{(\sqrt{5}+1)(\sqrt{3}-1)}=\frac{(\sqrt{3}+\sqrt{5})(\sqrt{5}-1)(\sqrt{3}+1)}{(\sqrt{5}+1)(\sqrt{5}-1)(\sqrt{3}-1)(\sqrt{3}+1)}\)
\(=\frac{(\sqrt{3}+\sqrt{5})(\sqrt{5}-1)(\sqrt{3}+1)}{(5-1)(3-1)}=\frac{(\sqrt{3}+\sqrt{5})(\sqrt{5}-1)(\sqrt{3}+1)}{8}\)
EM thử thôi, ko chắc đâu ạ:( Sai thì xin thông cảm cho ạ.
1) \(\sqrt{\frac{2}{3-\sqrt{5}}}=\sqrt{\frac{2\left(3+\sqrt{5}\right)}{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}}=\sqrt{\frac{6+2\sqrt{5}}{4}}=\frac{\sqrt{6+2\sqrt{5}}}{2}\)
2) \(\sqrt{\frac{a-4}{2\left(\sqrt{a}-2\right)}}=\sqrt{\frac{\left(a-4\right)\left(\sqrt{a}+2\right)}{2\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}}\)
\(=\sqrt{\frac{\left(a-4\right)\left(\sqrt{a}+2\right)}{2\left(a-4\right)}}\)
3) \(\sqrt{\frac{1}{a\left(1-\sqrt{3}\right)}}=\sqrt{\frac{1+\sqrt{3}}{a\left(1-\sqrt{3}\right)\left(1+\sqrt{3}\right)}}=\sqrt{\frac{1+\sqrt{3}}{a\left(1-3\right)}}=\sqrt{-\frac{1+\sqrt{3}}{2a}}\)
4) \(\sqrt{\frac{a}{4-2\sqrt{3}}}=\sqrt{\frac{a\left(4+2\sqrt{3}\right)}{\left(4-2\sqrt{3}\right)\left(4+2\sqrt{3}\right)}}=\sqrt{\frac{4a+2a\sqrt{3}}{16-12}}=\sqrt{\frac{4a+2a\sqrt{3}}{4}}=\frac{\sqrt{4a+2a\sqrt{3}}}{2}\)
a) \(\frac{\sqrt{2}}{1+\sqrt{2}-\sqrt{3}}=\frac{\sqrt{2}.\left(1-\sqrt{2}+\sqrt{3}\right)}{\left(1+\sqrt{2}-\sqrt{3}\right).\left(1-\sqrt{2}+\sqrt{3}\right)}.\)
\(=\frac{\sqrt{2}.\left(1-\sqrt{2}+\sqrt{3}\right)}{1-\left(\sqrt{2}-\sqrt{3}\right)^2}=\frac{\sqrt{2}.\left(1-\sqrt{2}+\sqrt{3}\right)}{1-\left(5-2\sqrt{6}\right)}\)
\(=\frac{\sqrt{2}.\left(1-\sqrt{2}+\sqrt{3}\right)}{-4+2\sqrt{6}}=\frac{1-\sqrt{2}+\sqrt{3}}{-2\sqrt{2}+2\sqrt{3}}\)
\(=\frac{\left(1-\sqrt{2}+\sqrt{3}\right).\left(\sqrt{2}+\sqrt{3}\right)}{-2\left(\sqrt{2}-\sqrt{3}\right).\left(\sqrt{2}+\sqrt{3}\right)}\)
\(=\frac{\left(1-\sqrt{2}+\sqrt{3}\right).\left(\sqrt{2}+\sqrt{3}\right)}{-2.\left(2-3\right)}\)\(=\frac{\left(1-\sqrt{2}+\sqrt{3}\right).\left(\sqrt{2}+\sqrt{3}\right)}{2}\)
Căn thức ở mẫu đã được trục rồi.
Nếu cần thì phá ngoặc phần tử số ra.
b) Nhân cả tử số và mẫu số cho \(\sqrt{a+3}-\sqrt{a-3}\)thì mẫu số có giá trị là (a + 3) - (a - 3) = 6; tử số có giá trị là \(\left(\sqrt{a+3}-\sqrt{a-3}\right)^2\). Khi đó, căn thức ở mẫu đã được trục đi rồi. Sau đó bạn phá ngoặc phần tử số ra.
a) \(\sqrt{\dfrac{1}{600}}=\dfrac{\sqrt{1}}{10\sqrt{6}}=\dfrac{\sqrt{1}.\sqrt{6}}{10\sqrt{6}.\sqrt{6}}=\dfrac{\sqrt{6}}{60}\)
b) \(\sqrt{\dfrac{11}{540}}=\dfrac{\sqrt{11}}{6\sqrt{15}}=\dfrac{\sqrt{11}.\sqrt{15}}{6\sqrt{15}.\sqrt{15}}=\dfrac{\sqrt{165}}{90}\)
c) \(\sqrt{\dfrac{3}{50}}=\dfrac{\sqrt{3}}{5\sqrt{2}}=\dfrac{\sqrt{3}.\sqrt{2}}{5\sqrt{2}.\sqrt{2}}=\dfrac{\sqrt{6}}{10}\)
d) \(\sqrt{\dfrac{5}{98}}=\dfrac{\sqrt{5}}{7\sqrt{2}}=\dfrac{\sqrt{5}.\sqrt{2}}{7\sqrt{2}.\sqrt{2}}=\dfrac{\sqrt{10}}{14}\)
e) \(\sqrt{\dfrac{\left(1-\sqrt{3}\right)^2}{27}}=\dfrac{\sqrt{\left(1-\sqrt{3}\right)^2}}{3\sqrt{3}}=\dfrac{\sqrt{3}-1}{3\sqrt{3}}=\dfrac{\sqrt{3}\left(\sqrt{3}-1\right)}{3\sqrt{3}.\sqrt{3}}=\dfrac{3-\sqrt{3}}{9}\)
\(\sqrt{\dfrac{1}{600}}=\sqrt{\dfrac{1\cdot6}{600\cdot6}}=\sqrt{\dfrac{6}{60^2}}=\dfrac{\sqrt{6}}{60}\)
\(\sqrt{\dfrac{11}{540}}=\sqrt{\dfrac{11\cdot15}{540\cdot15}}=\sqrt{\dfrac{165}{90^2}}=\dfrac{\sqrt{165}}{90}\)
\(\sqrt{\dfrac{3}{50}}=\sqrt{\dfrac{3\cdot2}{50\cdot2}}=\sqrt{\dfrac{6}{10^2}}=\dfrac{\sqrt{6}}{10}\)
\(\sqrt{\dfrac{5}{98}}=\sqrt{\dfrac{5\cdot2}{98\cdot2}}=\sqrt{\dfrac{10}{12^2}}=\dfrac{\sqrt{10}}{12}\)
\(\sqrt{\dfrac{\left(1-\sqrt{3}\right)^2}{27}}=\sqrt{\dfrac{3\left(1-\sqrt{3}\right)^2}{27\cdot3}}\)
\(=\dfrac{\sqrt{3\left(1-\sqrt{3}\right)^2}}{\sqrt{9^2}}=\dfrac{\left|1-\sqrt{3}\right|\cdot\sqrt{3}}{9}\)
\(=\dfrac{\left(\sqrt{3}-1\right)\sqrt{3}}{9}\)
a) \(\sqrt{\frac{3}{125}}=\frac{\sqrt{3.125}}{125}=\frac{\sqrt{375}}{125}=\frac{5\sqrt{15}}{125}=\frac{\sqrt{15}}{25}\)
b) \(\sqrt{\frac{3}{2a^3}}=\frac{\sqrt{3.2a^3}}{2a^3}=\frac{\sqrt{6a^3}}{2a^3}\)
c) \(\sqrt{\frac{\left(1-\sqrt{3}\right)^2}{27}}=\frac{\sqrt{27\left(1-\sqrt{3}\right)^2}}{27}=\frac{3.\left(\sqrt{3}-1\right)\sqrt{3}}{27}=\frac{\left(\sqrt{3}-1\right)\sqrt{3}}{9}\)
d) \(\sqrt{\frac{11}{540}}=\frac{\sqrt{11.540}}{540}=\frac{\sqrt{5940}}{50}=\frac{6\sqrt{165}}{50}=\frac{3\sqrt{165}}{25}\)
\(\sqrt{\frac{\left(1-\sqrt{3}\right)^2}{27}}=\sqrt{\frac{4-2\sqrt{3}}{27}}=0,1408832436\)