K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2020

a) \(\frac{\sqrt{2}}{1+\sqrt{2}-\sqrt{3}}=\frac{\sqrt{2}.\left(1-\sqrt{2}+\sqrt{3}\right)}{\left(1+\sqrt{2}-\sqrt{3}\right).\left(1-\sqrt{2}+\sqrt{3}\right)}.\)

\(=\frac{\sqrt{2}.\left(1-\sqrt{2}+\sqrt{3}\right)}{1-\left(\sqrt{2}-\sqrt{3}\right)^2}=\frac{\sqrt{2}.\left(1-\sqrt{2}+\sqrt{3}\right)}{1-\left(5-2\sqrt{6}\right)}\)

\(=\frac{\sqrt{2}.\left(1-\sqrt{2}+\sqrt{3}\right)}{-4+2\sqrt{6}}=\frac{1-\sqrt{2}+\sqrt{3}}{-2\sqrt{2}+2\sqrt{3}}\)

\(=\frac{\left(1-\sqrt{2}+\sqrt{3}\right).\left(\sqrt{2}+\sqrt{3}\right)}{-2\left(\sqrt{2}-\sqrt{3}\right).\left(\sqrt{2}+\sqrt{3}\right)}\)

\(=\frac{\left(1-\sqrt{2}+\sqrt{3}\right).\left(\sqrt{2}+\sqrt{3}\right)}{-2.\left(2-3\right)}\)\(=\frac{\left(1-\sqrt{2}+\sqrt{3}\right).\left(\sqrt{2}+\sqrt{3}\right)}{2}\)

Căn thức ở mẫu đã được trục rồi.

Nếu cần thì phá ngoặc phần tử số ra.

b) Nhân cả tử số và mẫu số cho \(\sqrt{a+3}-\sqrt{a-3}\)thì mẫu số có giá trị là (a + 3) - (a - 3) = 6; tử số có giá trị là \(\left(\sqrt{a+3}-\sqrt{a-3}\right)^2\). Khi đó, căn thức ở mẫu đã được trục đi rồi. Sau đó bạn phá ngoặc phần tử số ra.

AH
Akai Haruma
Giáo viên
30 tháng 3 2020

Bài 1:

a)

\(\frac{\sqrt{2.3}+\sqrt{2.7}}{2\sqrt{3}+2\sqrt{7}}=\frac{\sqrt{2}(\sqrt{3}+\sqrt{7})}{2(\sqrt{3}+\sqrt{7})}=\frac{\sqrt{2}}{2}\)

b)

\(\frac{\sqrt{2}+1}{\sqrt{2}-1}=\frac{(\sqrt{2}+1)^2}{(\sqrt{2}-1)(\sqrt{2}+1)}=\frac{3+2\sqrt{2}}{2-1}=3+2\sqrt{2}\)

AH
Akai Haruma
Giáo viên
30 tháng 3 2020

Bài 2:

a)

\(\frac{1}{\sqrt{2}+1}+\frac{1}{\sqrt{3}+\sqrt{2}}+\frac{1}{\sqrt{4}+\sqrt{3}}=\frac{\sqrt{2}-1}{(\sqrt{2}+1)(\sqrt{2}-1)}+\frac{\sqrt{3}-\sqrt{2}}{(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})}+\frac{\sqrt{4}-\sqrt{3}}{(\sqrt{4}+\sqrt{3})(\sqrt{4}-\sqrt{3})}\)

\(=\frac{\sqrt{2}-\sqrt{1}}{2-1}+\frac{\sqrt{3}-\sqrt{2}}{3-2}+\frac{\sqrt{4}-\sqrt{3}}{4-3}\)

\(=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}=\sqrt{4}-\sqrt{1}=1\) (đpcm)

b)

\(\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}=\sqrt{\frac{4+2\sqrt{3}}{2}}+\sqrt{\frac{4-2\sqrt{3}}{2}}\)

\(=\sqrt{\frac{(\sqrt{3}+1)^2}{2}}+\sqrt{\frac{(\sqrt{3}-1)^2}{2}}=\frac{\sqrt{3}+1}{\sqrt{2}}+\frac{\sqrt{3}-1}{\sqrt{2}}=\frac{2\sqrt{3}}{\sqrt{2}}=\sqrt{6}\) (đpcm)

c) Sửa đề:

\(\left(\frac{\sqrt{a}}{\sqrt{a}+2}-\frac{\sqrt{a}}{\sqrt{a}-2}+\frac{4\sqrt{a}-1}{a-4}\right):\frac{1}{a-4}=\left[\frac{a-2\sqrt{a}-(a+2\sqrt{a})}{(\sqrt{a}+2)(\sqrt{a}-2)}+\frac{4\sqrt{a}-1}{a-4}\right].(a-4)\)

\(=\left(\frac{-4\sqrt{a}}{a-4}+\frac{4\sqrt{a}-1}{a-4}\right).(a-4)=-4\sqrt{a}+4\sqrt{a}-1=-1\)

d)

\(\frac{\sqrt{a}+\sqrt{b}}{2\sqrt{a}-2\sqrt{b}}-\frac{\sqrt{a}-\sqrt{b}}{2\sqrt{a}+2\sqrt{b}}-\frac{2b}{b-a}=\frac{(\sqrt{a}+\sqrt{b})^2-(\sqrt{a}-\sqrt{b})^2}{2(\sqrt{a}+\sqrt{b})(\sqrt{a}-\sqrt{b})}+\frac{2b}{a-b}=\frac{4\sqrt{ab}}{2(a-b)}+\frac{2b}{a-b}\)

\(=\frac{2\sqrt{ab}+2b}{a-b}=\frac{2\sqrt{b}(\sqrt{a}+\sqrt{b})}{(\sqrt{a}-\sqrt{b})(\sqrt{a}+\sqrt{b})}=\frac{2\sqrt{b}}{\sqrt{a}-\sqrt{b}}\)

19 tháng 10 2019

b)\(\frac{3\sqrt{2}}{\sqrt{3}+1}\)

\(=\frac{3\sqrt{2}\left(\sqrt{3}-1\right)}{(\sqrt{3}+1)\left(\sqrt{3}-1\right)}\)

\(=\frac{3\left(\sqrt{6}-\sqrt{2}\right)}{3-1}\)

\(=\frac{3\left(\sqrt{6}-\sqrt{2}\right)}{2}\)

19 tháng 10 2019

a)\(\left(\sqrt{3}+1\right)^2+\left(1-\sqrt{3}\right)^2\)

\(=3+2\sqrt{3}+1+1-2\sqrt{3}+3\)

\(=8\)

b)\(\left(\sqrt{28}-2\sqrt{3}+\sqrt{7}\right)\sqrt{7}+\sqrt{84}\)

\(=\sqrt{28.7}-2\sqrt{3.7}+\sqrt{7}.\sqrt{7}+\sqrt{84}\)

\(=\sqrt{196}-2\sqrt{21}+7+\sqrt{4.21}\)

\(=\sqrt{14^2}-2\sqrt{21}+7+2\sqrt{21}\)

\(=14-2\sqrt{21}+7+2\sqrt{21}\)

\(=21\)

6 tháng 7 2019

EM thử thôi, ko chắc đâu ạ:( Sai thì xin thông cảm cho ạ.

1) \(\sqrt{\frac{2}{3-\sqrt{5}}}=\sqrt{\frac{2\left(3+\sqrt{5}\right)}{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}}=\sqrt{\frac{6+2\sqrt{5}}{4}}=\frac{\sqrt{6+2\sqrt{5}}}{2}\)

2) \(\sqrt{\frac{a-4}{2\left(\sqrt{a}-2\right)}}=\sqrt{\frac{\left(a-4\right)\left(\sqrt{a}+2\right)}{2\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}}\)

\(=\sqrt{\frac{\left(a-4\right)\left(\sqrt{a}+2\right)}{2\left(a-4\right)}}\)

3) \(\sqrt{\frac{1}{a\left(1-\sqrt{3}\right)}}=\sqrt{\frac{1+\sqrt{3}}{a\left(1-\sqrt{3}\right)\left(1+\sqrt{3}\right)}}=\sqrt{\frac{1+\sqrt{3}}{a\left(1-3\right)}}=\sqrt{-\frac{1+\sqrt{3}}{2a}}\)

4) \(\sqrt{\frac{a}{4-2\sqrt{3}}}=\sqrt{\frac{a\left(4+2\sqrt{3}\right)}{\left(4-2\sqrt{3}\right)\left(4+2\sqrt{3}\right)}}=\sqrt{\frac{4a+2a\sqrt{3}}{16-12}}=\sqrt{\frac{4a+2a\sqrt{3}}{4}}=\frac{\sqrt{4a+2a\sqrt{3}}}{2}\)

5 tháng 8 2019

a) \(\frac{3}{\sqrt{5}}=\frac{3\sqrt{5}}{\sqrt{5}.\sqrt{5}}=\frac{3\sqrt{5}}{5}\)

\(\frac{2\sqrt{3}}{\sqrt{2}}=\frac{2\sqrt{3}.\sqrt{2}}{\sqrt{2}.\sqrt{2}}=\frac{2\sqrt{6}}{2}=\sqrt{6}\)

\(\frac{a}{\sqrt{b}}=\frac{a\sqrt{b}}{\sqrt{b}.\sqrt{b}}=\frac{a\sqrt{b}}{b}\)

\(\frac{x+1}{\sqrt{x^2-1}}=\frac{\left(x+1\right)\left(\sqrt{x^2-1}\right)}{\left(\sqrt{x^2-1}\right)\left(\sqrt{x^2-1}\right)}\) = \(\frac{\left(\sqrt{x^2-1}\right)\left(x+1\right)}{x^2-1}\)

5 tháng 8 2019

bạn làm tương tự nha

7 tháng 8 2019
https://i.imgur.com/B4LOqxT.jpg
12 tháng 8 2019

câu c đâu

3 tháng 8 2020

a/ \(\frac{1}{2+\sqrt{3}}-\frac{1}{2-\sqrt{3}}+5\sqrt{3}\)

\(=\frac{2-\sqrt{3}}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}-\frac{2+\sqrt{3}}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}+5\sqrt{3}\)

\(=\frac{2-\sqrt{3}}{4-3}-\frac{2+\sqrt{3}}{4-3}+5\sqrt{3}\)

\(=2-\sqrt{3}-2-\sqrt{3}+5\sqrt{3}\)

\(=3\sqrt{3}\)

Vậy..

3 tháng 8 2020

b/ \(\frac{1}{\sqrt{5}+2}-\sqrt{9+4\sqrt{5}}\)

\(=\frac{1}{\sqrt{5}+2}-\sqrt{\left(\sqrt{5}+2\right)^2}\)

\(=\frac{1}{\sqrt{5}+2}-\left|\sqrt{5}+2\right|\)

\(=\frac{\sqrt{5}-2}{\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)}-\sqrt{5}-2\)

\(=\sqrt{5}-2-\sqrt{5}-2\)

\(=-4\)

Vậy..