Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta đặt: A = \(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}\)
\(A=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}\)
\(\Rightarrow3A=3+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}\)
\(\Rightarrow3A-A=\left(3+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}\right)\)
\(\Rightarrow2A=3-\frac{1}{3^4}\)
\(\Rightarrow A=\left(3-\frac{1}{3^4}\right):2\)
Giải
1+ 1 /3+1/9+1/27+1/81+1/243+1/729.
Đặt:
S = 1 + 1/3 + 1/9 + 1/27 + 1/81 + 1/243 + 1/729
Nhân S với 3 ta có:
S x 3 = 3 + 1/3 + 1/9 + 1/27 + 1/81 + 1/243
Vậy:
S x 3 - S = 3 - 1/243
2S = 2186 / 729
S = 2186 / 729 : 2
S = 1093/729
A= 1+\(\frac{1}{3}+\frac{1}{9}+\frac{1}{27} +\frac{1}{81}\)
=1+\(\frac{1}{3^1}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}\)
=> 3A-A=(\(\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3}+1\))-(1+\(\frac{1}{3^1}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}\))
=>2A=3-\(\frac{1}{3^4}\)
=> A=(3-\(\frac{1}{3^4}\)):2
Bạn kiểm tra lại đề hộ. Nếu có phân số \(\frac{1}{4}\)thì chịu còn không có thì dễ.
{(1999x2001-1)/(1998+1999x2000)}x7/5
={[(1999x(2000+1)-1]/(1998+1999x2000)}...
={(1999x2000+1999-1)/(1998+1999x2000)}...
={(1999x2000+1998)/(1998+1999x2000)}x7...
=1x7/5
=7/5
A = 1/3 + 1/9 + 1/27 + 1/81 + 1/243 + 1/729
A * 3= 3* ( 1/3 + 1/9 + 1/27 + 1/81 + 1/243 + 1/729)
A* 3 = 1 + 1/3 + 1/9 + 1/27 + 1/81 + 1/243
A * 3 - A = 1 + 1/3 + 1/9 + 1/27 + 1/81 + 1/243 - 1/3 - 1/9 - 1/27 - 1/81 - 1/243 - 1/729
A * 2 = 1 - 1/ 729
A * 2 = 1/728
A = 1/728 : 2
A = 2/728
Nếu không quy đồng Mẫu thì ta quy đồng Tử
P/S: 2/728 VÀ 1/2
1/2 = 1*2/ 2*2
= 2/4
So sánh 2/4 và 2/278 ta thấy phân số 2/4 lớn hơn.
Vậy 1/2 > A
Đ/S: A = 2/728
1/2 > A
\(A=\frac{1}{3}+\frac{1}{3x3}+\frac{1}{3x3x3}+\frac{1}{3x3x3x3}+\frac{1}{3x3x3x3x3}+\frac{1}{3x3x3x3x3x3}.\)
\(3xA=1+\frac{1}{3}+\frac{1}{3x3}+\frac{1}{3x3x3}+\frac{1}{3x3x3x3}+\frac{1}{3x3x3x3x3}\)
\(2xA=3xA-A=1-\frac{1}{3x3x3x3x3x3}\)
\(A=\frac{1}{2}-\frac{1}{3x3x3x3x3x3}< \frac{1}{2}\)
a)
Vì 2/9=6/27=8/36=12/54=16/72=18/81 nên:
2/9+6/27+8/36+12/54+16/72+18/81=
2/9+2/9+2/9+2/9+2/9+2/9=
2/9*6=
12/9=
4/3
Vậy 2/9+6/27+8/36+12/54+16/72+18/81=4/3
b)
Ta có:
1-2/5=3/5
1-2/7=5/7
1-2/9=7/9
...
1-2/99=97/99
Vậy (1-2/5)*(1-2/7)*(1-2/9)*...*(1-2/99)=
3/5*5/7*7/9*...*97/99=
(3*5*7*...*97)/(5*7*9*...*99)=
3/99=
1/33
Vậy (1-2/5)*(1-2/7)*(1-2/9)*...*(1-2/99)=1/33
c)
Gọi biểu thức 1/2+1/4+1/8+1/16+...+1/1024 là S,ta có:
S=1/2+1/4+1/8+1/16+...+1/1024
S*2=1+1/2+1/4+1/8+...+1/512
S*2-S=(1+1/2+1/4+1/8+...+1/512)-(1/2+1/4+1/8+1/16+...+1/1024)
S=1-1/1024
S=1023/1024
Vậy 1/2+1/4+1/8+1/16+...+1/1024=1023/1024
Bài 1:
Quy đồng mẫu số các phân số:
a; \(\dfrac{2}{5}\) và \(\dfrac{3}{4}\); \(\dfrac{2}{5}\) = \(\dfrac{2\times4}{5\times4}\) = \(\dfrac{8}{20}\); \(\dfrac{3}{4}\) = \(\dfrac{3\times5}{4\times5}\) = \(\dfrac{15}{20}\)
b; \(\dfrac{2}{7}\) và \(\dfrac{5}{14}\); \(\dfrac{2}{7}\) = \(\dfrac{2\times2}{7\times2}\) = \(\dfrac{4}{14}\)
c; \(\dfrac{4}{9}\) và \(\dfrac{5}{27}\); \(\dfrac{4}{9}\) = \(\dfrac{4\times3}{9\times3}\) = \(\dfrac{12}{27}\);
d; \(\dfrac{2}{3};\dfrac{4}{5}\);\(\dfrac{5}{6}\)
\(\dfrac{2}{3}\) = \(\dfrac{2\times10}{3\times10}\) = \(\dfrac{20}{30}\); \(\dfrac{4}{5}\) = \(\dfrac{4\times6}{5\times6}\) = \(\dfrac{24}{30}\); \(\dfrac{5\times5}{6\times5}\) = \(\dfrac{25}{30}\)