Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời:
7777772/7777778 > 88888881/88888889
Mik nghĩ là vậy nhưng nếu sai thì thôi nha
do 88888889>7777778
và 88888881>7777772
=>\(\frac{7777772}{7777778}\)<\(\frac{88888881}{88888889}\)
\(S=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+....+\frac{1}{20}\)
\(=\left(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}\right)+\left(\frac{1}{16}+\frac{1}{17}+\frac{1}{18}+\frac{1}{19}+\frac{1}{20}\right)\)
\(>\frac{1}{15}\cdot5+\frac{1}{20}\cdot5\)
\(=\frac{1}{3}+\frac{1}{4}\)
\(=\frac{7}{12}>\frac{6}{12}=\frac{1}{2}\)
\(\Rightarrow S>\frac{1}{2}\)
Bài làm
Ta có:
\(\frac{1}{11}>\frac{1}{20}\), \(\frac{1}{12}>\frac{1}{20}\), \(\frac{1}{13}>\frac{1}{20}\), \(\frac{1}{14}>\frac{1}{20}\), \(\frac{1}{15}>\frac{1}{20}\), \(\frac{1}{16}>\frac{1}{20}\), \(\frac{1}{17}>\frac{1}{20}\), \(\frac{1}{18}>\frac{1}{20}\),\(\frac{1}{19}>\frac{1}{20}\)
=> \(S=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}+\frac{1}{17}+\frac{1}{18}+\frac{1}{19}+\frac{1}{20}>\frac{1}{20}\)
hay \(\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}\)
=> \(S=\frac{1}{20}.10=\frac{10}{20}=\frac{1}{2}\)
Do đó: \(S=\frac{1}{2}\)
# Chúc bạn học tốt #
b,Ta có
\(\frac{2010}{2011}>\frac{2010}{2011+2012+2013}\)
\(\frac{2011}{2012}>\frac{2011}{2011+2012+2013}\)
\(\frac{2012}{2013}>\frac{2012}{2011+2012+2013}\)
\(\Rightarrow P>Q\)
\(A=\frac{-10}{20}+\frac{-10}{30}+\frac{-10}{42}+\frac{-10}{56}+\frac{-10}{72}+\frac{-10}{90}+\frac{-10}{110}\)
\(=-10\left(\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}\right)\)
\(=-10\left(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}\right)\)
\(=-10\left(\frac{1}{4}-\frac{1}{11}\right)\)
\(=\frac{-35}{22}\)
đặt A=\(\frac{5}{2.1}+\frac{4}{1.11}+\frac{3}{11.2}+\frac{1}{2.15}+\frac{13}{15.4}\)
\(\frac{1}{7}A=\frac{5}{2.7.1}+\frac{4}{7.1.11}+\frac{3}{11.2.7}+\frac{1}{2.15.7}+\frac{13}{15.4.7}\)
\(\frac{1}{7}A=\frac{5}{7.2}+\frac{4}{7.11}+\frac{3}{11.14}+\frac{1}{14.15}+\frac{13}{15.28}\)
\(\frac{1}{7}A=\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{15}+\frac{1}{15}-\frac{1}{28}\)
\(\frac{1}{7}A=\frac{1}{2}-\frac{1}{28}=\frac{13}{28}\Rightarrow A=\frac{13}{4}\)
p/s: đối vs mấy bn lớp 6 có lẽ bài này ko ez lắm :))
Ta chứng minh bài toán phụ:
Với a<b thì\(\frac{a}{b}< \frac{a+c}{b+c}\)\(\left(c\inℕ^∗\right)\)
Ta có: \(a< b\)
\(\Rightarrow ac< bc\)
\(\Rightarrow ac+ba< bc+ba\)
\(a\left(b+c\right)< b.\left(a+c\right)\)
\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+c}\)
đpcm
Áp dụng vào bài toán ta có:
\(\frac{10^{20}+1}{10^{21}+1}< \frac{10^{20}+1+9}{10^{21}+1+9}=\frac{10^{20}+10}{10^{21}+10}=\frac{10.\left(10^{19}+1\right)}{10.\left(10^{20}+1\right)}=\frac{10^{19}+1}{10^{20}+1}\)
Vậy \(\frac{10^{19}+1}{10^{20}+1}>\frac{10^{20}+1}{10^{21}+1}\)
Tham khảo nhé~
Đặt \(A=\frac{10^{19}+1}{10^{20}+1}\)
\(\Rightarrow10A=\frac{10^{20}+10}{10^{20}+1}=\frac{10^{20}+1+9}{10^{20}+1}=1+\frac{9}{10^{20}+1}\)
\(B=\frac{10^{20}+1}{10^{21}+1}\)
\(\Rightarrow10B=\frac{10^{21}+10}{10^{21}+1}=\frac{10^{21}+1+9}{10^{21}+1}=1+\frac{9}{10^{21}+1}\)
\(\Rightarrow\frac{9}{10^{20}+1}>\frac{9}{10^{21}+1}\)
\(\Rightarrow1+\frac{9}{10^{20}+1}>1+\frac{9}{10^{21}+1}\)
\(\Rightarrow10A>10B\Rightarrow A>B\)
a, Ta có:
\(\frac{-3}{4}=\frac{-15}{20}< \frac{-7}{20}\Rightarrow\frac{-3}{4}< \frac{-7}{20}\)
b,Ta có:\(\frac{-7}{8}< 1< \frac{30}{-42}\Rightarrow\frac{-7}{8}< \frac{30}{-42}\)
Thank:)
\(\frac{12}{11}=1+\frac{1}{11}\)
\(\frac{20}{19}=1+\frac{1}{19}\)
Ta thấy \(\frac{1}{11}>\frac{1}{19}\Rightarrow1+\frac{1}{11}>1+\frac{1}{19}\)
\(\Rightarrow\frac{12}{11}>\frac{20}{19}\)
\(\frac{12}{11}=\frac{228}{209}\)
\(\frac{20}{19}=\frac{380}{209}\)
\(\Rightarrow\frac{228}{209}< \frac{380}{209}\Rightarrow\frac{12}{11}< \frac{20}{19}\)