K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 4 2018

Đề kiểm tra Toán 9 | Đề thi Toán 9

Xét tam giác ABC vuông tại A có: (ABC) = 60 0 , BC = 8 cm

⇒ AB = BC.cos (ABC) = 8.cos  60 0  = 4 (cm)

AC = BC.sin (ABC) = 8.sin  60 0  = 4 3 (cm)

Diện tích xung quanh của hình nón là

S x q  = πrl = π.AB.BC = π.4.8 = 32 ( c m 2 )

Thể tích hình nón là:

Đề kiểm tra Toán 9 | Đề thi Toán 9

21 tháng 7 2019

Giải bài 17 trang 135 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 17 trang 135 SGK Toán 9 Tập 2 | Giải toán lớp 9

18 tháng 10 2018

Giải bài 17 trang 135 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 17 trang 135 SGK Toán 9 Tập 2 | Giải toán lớp 9

25 tháng 4 2017

Hướng dẫn làm bài:

Trong tam giác vuông ABC, ta có:

AB=BC.sinC=BC.sin300=4.1/2=2(dm)

AC=BC.cosC=BC.cos300=4.√3/2=2√3(dm)

Ta có: Sxq = πRl = π. 2. 4 = 8 π (dm2)

V=1/3 π Rh=1/3 π.22.2√3=8√3.π/3(dm3)

1 tháng 1 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

DD
26 tháng 5 2022

Quay tam giác \(ABC\) quanh cạnh \(AB\) cố định thu được hình nón có đỉnh là \(B\) đáy là đường tròn đáy bán kính \(AC\).

Theo định lí Pythagore ta có: 

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow AC=\sqrt{10^2-6^2}=8\left(cm\right)\)

Diện tích xung quanh hình nón là :

\(S_{xq}=\pi rl=\pi.AC.BC=80\pi\left(cm^2\right)\)

29 tháng 10 2018

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Khi quay tam giác ABC một vòng quanh cạnh huyền BC ta được hai hình nón có đáy úp vào nhau, bán kính đường tròn đáy bằng đường cao AH kẻ từ A đến cạnh huyền BC.

Trong tam giác vuông ABC ta có:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

22 tháng 9 2018

a,  S x q N 1 = πAC . BC = π . b . b 2 + c 2 = S 1

S x q N 2 = πA B . BC = π . c . b 2 + c 2 = S 2

=>  S 1 ≠ S 2

b,  V N 1 = 1 3 π . AC 2 . AB = 1 3 b 2 c

V N 2 = 1 3 π . A B 2 . A C = 1 3 c 2 b

=>  V N 1 ≠ V N 2