Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định lý Bê-du về phép chia đa thức , dư khi chia \(x^8\)cho \(x+\frac{1}{2}\)là \(\left(-\frac{1}{2}\right)^8=\frac{1}{2^8}\)
Do đó :\(x^8=\left(x+\frac{1}{2}\right)B\left(x\right)+\frac{1}{2^8}\)
\(\Rightarrow B\left(x\right)=\frac{x^8-\frac{1}{2^8}}{x+\frac{1}{2}}=\left(x-\frac{1}{2}\right)\left(x^2+\frac{1}{2^2}\right)\left(x^4+\frac{1}{2^4}\right)\)
Tiếp tục áp dụng định lý Bê-du , dư khi chia \(B\left(x\right)\)cho \(x+\frac{1}{2}\)là \(B\left(-\frac{1}{2}\right)\)
Do đó :
\(r_2=B\left(-\frac{1}{2}\right)=\left(\frac{-1}{2}-\frac{1}{2}\right)\left[\left(-\frac{1}{2}\right)^2+\frac{1}{2^2}\right]\left[\left(-\frac{1}{2^4}+\frac{1}{2^4}\right)\right]=-\frac{1}{16}\)
\(x^8=\left(x+\dfrac{1}{2}\right)B\left(x\right)+r_1\)
Thay \(x=-\dfrac{1}{2}\Rightarrow r_1=\dfrac{1}{2^8}\Rightarrow x^8=\left(x+\dfrac{1}{2}\right)B\left(x\right)+\dfrac{1}{2^8}\)
\(\Rightarrow B\left(x\right)=\dfrac{x^8-\dfrac{1}{2^8}}{x+\dfrac{1}{2}}=\dfrac{\left(x^4+\dfrac{1}{2^4}\right)\left(x^2+\dfrac{1}{2^2}\right)\left(x+\dfrac{1}{2}\right)\left(x-\dfrac{1}{2}\right)}{x+\dfrac{1}{2}}\)
\(\Rightarrow B\left(x\right)=\left(x^4+\dfrac{1}{2^4}\right)\left(x^2+\dfrac{1}{2^2}\right)\left(x-\dfrac{1}{2}\right)\)
Lại có \(B\left(x\right)=\left(x+\dfrac{1}{2}\right).C\left(x\right)+r_2\)
\(\Rightarrow r_2=B\left(-\dfrac{1}{2}\right)=\left(\dfrac{1}{2^4}+\dfrac{1}{2^4}\right)\left(\dfrac{1}{2^2}+\dfrac{1}{2^2}\right)\left(-\dfrac{1}{2}-\dfrac{1}{2}\right)=\dfrac{-1}{2^4}\)
Vì đa thức f(x) chia cho (x - 2) thì dư 5, khi chia cho (x - 3) thì dư 7, khi chia cho (x - 2).(x - 3) được thương là x^2 - 1 và có dư. Tìm f(x)
Vì đa thức f(x) chia cho (x - 2) thì dư 5 => f(x) = (x - 2).A(x) + 5 đúng với mọi x (1)
Vì đa thức f(x) chia cho (x - 3) thì dư 7 => f(x) = (x - 3).A(x) + 7 đúng với mọi x (2)
Đa thức f(x) chia cho (x - 2).(x - 3) được thương là x^2 - 1 và có dư, mà số chia có bậc 2 => Số dư có bậc không quá 1
=> f(x) = (x - 2)(x - 3)(x^2 - 1) + ax + b đúng với mọi x (3)
Vì (1) đúng với mọi x => f(2) = 5
Vì (2) đúng với mọi x => f(3) = 7
Vì (3) đúng với mọi x => f(2) = 2a + b; f(3) = 3a + b
=> {2a + b = 5 <=> a = 2; b = 1
{3a + b = 7
=> f(x) = (x - 2)(x - 3)(x^2 - 1) + 2x + 1
= (x^2 - 5x + 6)(x^2 - 1) + 2x + 1
= x^4 - 5x^3 + 6x^2 - x^2 + 5x - 6 + 2x + 1
= x^4 - 5x^3 + 5x^2 + 7x - 5
Gọi thương của P(x) khi chi cho (x-2), (x-3) lần lượt là A(x),B(x) =>P(x)=(x-2).A(x)+5 (1) và P(x)=(x-3).B(x)=7 (2) Gọi thương của P(x) khi chia cho (x-2).(x-3) là C(x) và dư là R(x) Ta có : (x-2)(x-3) có bậc là 2 => R(x) có bậc là 1 => R(x) có dạng ax+b (a,b là số nguyên ) =>R(x)=(x-2)(x-3).C(x)+ax+b (3) thay x=2 vào (1) và (3) ta có: P(x)=2a+b=5 thay x=3 vào (2) và (3) ta có: P(x)=3a+b=7 => a=2,b=1 =>R(x)=2x+1 Vậy dư của P(x) khi chia cho (x-2)(x-3) là 2x+1
Lời giải:
Áp dụng định lý Bê-du về phép chia đa thức, dư khi chia $x^8$ cho $x+\frac{1}{2}$ là \((-\frac{1}{2})^8=\frac{1}{2^8}\)
Do đó: \(x^8=(x+\frac{1}{2})B(x)+\frac{1}{2^8}\)
\(\Rightarrow B(x)=\frac{x^8-\frac{1}{2^8}}{x+\frac{1}{2}}=(x-\frac{1}{2})(x^2+\frac{1}{2^2})(x^4+\frac{1}{2^4})\)
Tiếp tục áp dụng định lý Bê-du, dư khi chia $B(x)$ cho $x+\frac{1}{2}$ là $B(-\frac{1}{2}$
Do đó:
\(r_2=B(\frac{-1}{2})=(\frac{-1}{2}-\frac{1}{2})[(-\frac{1}{2})^2+\frac{1}{2^2}][(-\frac{1}{2})^4+\frac{1}{2^4}]=-\frac{1}{16}\)
Lời giải:
Áp dụng định lý Bê-du về phép chia đa thức, dư khi chia $x^8$ cho $x+\frac{1}{2}$ là \((-\frac{1}{2})^8=\frac{1}{2^8}\)
Do đó: \(x^8=(x+\frac{1}{2})B(x)+\frac{1}{2^8}\)
\(\Rightarrow B(x)=\frac{x^8-\frac{1}{2^8}}{x+\frac{1}{2}}=(x-\frac{1}{2})(x^2+\frac{1}{2^2})(x^4+\frac{1}{2^4})\)
Tiếp tục áp dụng định lý Bê-du, dư khi chia $B(x)$ cho $x+\frac{1}{2}$ là $B(-\frac{1}{2}$
Do đó:
\(r_2=B(\frac{-1}{2})=(\frac{-1}{2}-\frac{1}{2})[(-\frac{1}{2})^2+\frac{1}{2^2}][(-\frac{1}{2})^4+\frac{1}{2^4}]=-\frac{1}{16}\)