K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2017

a) Tập xác định: R\{0}

Hàm số đã cho là hàm số lẻ.

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Ta có: y′ < 0, ∀ x ∈ R \ {0} nên hàm số luôn nghịch biến trên các khoảng xác định.

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Đồ thị có tiệm cận ngang là trục hoành, tiệm cận đứng là trục tung.

Bảng biến thiên:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Đồ thị của hàm số có tâm đối xứng là gốc tọa độ.

Giải sách bài tập Toán 12 | Giải sbt Toán 12

b) Tập xác định: D = (0; +∞)

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vì y' < 0 ∀ x ∈ D nên hàm số nghịch biến.

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Đồ thị có tiệm cận đứng là trục tung, tiệm cận ngang là trục hoành.

Bảng biến thiên:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

c) Tập xác định: D = (0; + ∞ )

y′ > 0, ∀ x ∈ D

Vì y′ > 0, ∀ x ∈ D nên hàm số nghịch biến.

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Đồ thị không có tiệm cận.

Bảng biến thiên

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Đồ thị

Giải sách bài tập Toán 12 | Giải sbt Toán 12

16 tháng 10 2018

Xét hàm số Giải bài 3 trang 61 sgk Giải tích 12 | Để học tốt Toán 12 ta có:

- Tập khảo sát : (0 ; +∞).

- Sự biến thiên:

Giải bài 3 trang 61 sgk Giải tích 12 | Để học tốt Toán 12 với ∀ x > 0.

Do đó, hàm số đã cho đồng biến trên tập xác định.

+ Giới hạn:

Giải bài 3 trang 61 sgk Giải tích 12 | Để học tốt Toán 12

+ Tiệm cận : Đồ thị hàm số không có tiệm cận.

+ Bảng biến thiên:

Giải bài 3 trang 61 sgk Giải tích 12 | Để học tốt Toán 12

- Đồ thị hàm số:

Giải bài 3 trang 61 sgk Giải tích 12 | Để học tốt Toán 12

11 tháng 10 2018

TXĐ: D = R

Sự biến thiên:

y′ = 3 x 2  – 6x = 3x(x – 2)

y′=0 ⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Hàm số đồng biến trên mỗi khoảng (– ∞ ;0), (2;+ ∞ )

Hàm số nghịch biến trên khoảng (0; 2).

Hàm số đạt cực đại tại x = 0 ; y CĐ  = y(0) = 0

Hàm số đạt cực tiểu tại x = 2;  y CT  = y(2) = -4.

Giới hạn: Giải sách bài tập Toán 12 | Giải sbt Toán 12

Điểm uốn: y” = 6x – 6, y” = 0 ⇔ x = 1; y(1) = –2

Suy ra đồ thị có điểm uốn I(1; -2)

Bảng biến thiên:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Đồ thị:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Đồ thị cắt trục hoành tại O(0;0), A(3;0). Đồ thị đi qua điểm B(-1;-4); C(2;-4).

28 tháng 7 2018

Hàm số Giải bài 7 trang 146 sgk Giải tích 12 | Để học tốt Toán 12

- Tập xác định: D = R\{2}

- Sự biến thiên:

Giải bài 7 trang 146 sgk Giải tích 12 | Để học tốt Toán 12

⇒ Hàm số đồng biến trên (-∞; 2) và (2; +∞).

+ Cực trị : Hàm số không có cực trị

+ Tiệm cận: Giải bài 7 trang 146 sgk Giải tích 12 | Để học tốt Toán 12

⇒ y = 0 (trục Ox) là tiệm cận ngang của đồ thị hàm số.

Giải bài 7 trang 146 sgk Giải tích 12 | Để học tốt Toán 12

⇒ x = 2 là tiệm cận đứng của đồ thị hàm số.

+ Bảng biến thiên:

Giải bài 7 trang 146 sgk Giải tích 12 | Để học tốt Toán 12

- Đồ thị:

Giải bài 7 trang 146 sgk Giải tích 12 | Để học tốt Toán 12

10 tháng 10 2017

Tập xác định: D = R;

Giải sách bài tập Toán 12 | Giải sbt Toán 12

y′= 0 ⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Hàm số đồng biến trên mỗi khoảng (– ∞ ; 0), (4; + ∞ ).

Hàm số nghịch biến trên mỗi khoảng (0; 4).

Hàm số đạt cực đại tại x = 0, y CĐ  = 5. Hàm số đạt cực tiểu tại x = 4,  y CT  = -3.

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Đồ thị đi qua A(-2; -3); B(6;5).

Giải sách bài tập Toán 12 | Giải sbt Toán 12

10 tháng 1 2019

Tập xác định: D = (0; + ∞ )

y′ > 0, ∀ x ∈ D

Vì y′ > 0,  x  D nên hàm số nghịch biến.

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Đồ thị không có tiệm cận.

Bảng biến thiên

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Đồ thị

Giải sách bài tập Toán 12 | Giải sbt Toán 12

5 tháng 11 2018

 

 

Do đó, hàm số đã cho nghịch biến trên tập xác định.

+ Giới hạn:

Giải bài 3 trang 61 sgk Giải tích 12 | Để học tốt Toán 12

⇒ x = 0 (trục Oy) là tiệm cận đứng của đồ thị hàm số

    y = 0 (trục Ox) là tiệm cận ngang của đồ thị hàm số.

+ Bảng biến thiên:

Giải bài 3 trang 61 sgk Giải tích 12 | Để học tốt Toán 12

- Đồ thị:

Giải bài 3 trang 61 sgk Giải tích 12 | Để học tốt Toán 12

3 tháng 3 2019

Hàm số y = f(x)

Các bước khảo sát hàm số:

1. Tìm tập xác định của hàm số

2. Sự biến thiên

- Xét chiều biến thiên:

   + Tính đạo hàm y'

   + Tìm các điểm tại đó y' bằng 0 hoặc không xác định

   + Xét dấu của đạo hàm y' và suy ra chiều biến thiên của hàm số.

QUẢNG CÁO

- Tìm cực trị

- Tìm các giới hạn tại vô cực, các giới hạn vô cực và tìm tiệm cận (nếu có)

- Lập bảng biến thiên.

3. Vẽ đồ thị của hàm số

Dựa vào bảng biến thiên và các yếu tố xác định ở trên để vẽ đồ thị.

8 tháng 12 2018

Với m = 2 ta được hàm số:  y = 2 x - 1 2 x + 2

- TXĐ: D = R \ {-1}

- Sự biến thiên:

+ Chiều biến thiên: Theo kết quả câu a)

Hàm số đồng biến trên (-∞ ; -1) và (-1 ; +∞)

+ Cực trị : Hàm số không có cực trị.

+ Tiệm cận:

Giải bài 6 trang 44 sgk Giải tích 12 | Để học tốt Toán 12

⇒ đồ thị có tiệm cận đứng là x = -1.

Lại có

Giải bài 6 trang 44 sgk Giải tích 12 | Để học tốt Toán 12

⇒ đồ thị có tiệm cận ngang là y = 1.

+ Bảng biến thiên:

Giải bài 6 trang 44 sgk Giải tích 12 | Để học tốt Toán 12

- Đồ thị:

+ Đồ thị cắt trục hoành tại (1/2 ; 0).

+ Đồ thị cắt trục tung tại (0 ; -1/2).

+ Đồ thị nhận I(-1 ; 1) là tâm đối xứng.

Giải bài 6 trang 44 sgk Giải tích 12 | Để học tốt Toán 12

23 tháng 5 2019

Tập xác định: D = R

y′=0 ⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Hàm số đồng biến trên mỗi khoảng (-1; 0) và (1; + ∞ )

Hàm số nghịch biến trên mỗi khoảng (− ∞ ; −1); (0; 1)

Hàm số đạt cực đại tại x = 0; y CĐ  = 0

Hàm số đạt cực tiểu tại x = 1 hoặc x = -1;  y CT  = −2

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Đồ thị có hai điểm uốn:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Bảng biến thiên:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Đồ thị:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Đồ thị cắt trục hoành tại