K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2017

Tập xác định: D = R;

Giải sách bài tập Toán 12 | Giải sbt Toán 12

y′= 0 ⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Hàm số đồng biến trên mỗi khoảng (– ∞ ; 0), (4; + ∞ ).

Hàm số nghịch biến trên mỗi khoảng (0; 4).

Hàm số đạt cực đại tại x = 0, y CĐ  = 5. Hàm số đạt cực tiểu tại x = 4,  y CT  = -3.

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Đồ thị đi qua A(-2; -3); B(6;5).

Giải sách bài tập Toán 12 | Giải sbt Toán 12

28 tháng 7 2018

Hàm số Giải bài 7 trang 146 sgk Giải tích 12 | Để học tốt Toán 12

- Tập xác định: D = R\{2}

- Sự biến thiên:

Giải bài 7 trang 146 sgk Giải tích 12 | Để học tốt Toán 12

⇒ Hàm số đồng biến trên (-∞; 2) và (2; +∞).

+ Cực trị : Hàm số không có cực trị

+ Tiệm cận: Giải bài 7 trang 146 sgk Giải tích 12 | Để học tốt Toán 12

⇒ y = 0 (trục Ox) là tiệm cận ngang của đồ thị hàm số.

Giải bài 7 trang 146 sgk Giải tích 12 | Để học tốt Toán 12

⇒ x = 2 là tiệm cận đứng của đồ thị hàm số.

+ Bảng biến thiên:

Giải bài 7 trang 146 sgk Giải tích 12 | Để học tốt Toán 12

- Đồ thị:

Giải bài 7 trang 146 sgk Giải tích 12 | Để học tốt Toán 12

11 tháng 10 2018

TXĐ: D = R

Sự biến thiên:

y′ = 3 x 2  – 6x = 3x(x – 2)

y′=0 ⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Hàm số đồng biến trên mỗi khoảng (– ∞ ;0), (2;+ ∞ )

Hàm số nghịch biến trên khoảng (0; 2).

Hàm số đạt cực đại tại x = 0 ; y CĐ  = y(0) = 0

Hàm số đạt cực tiểu tại x = 2;  y CT  = y(2) = -4.

Giới hạn: Giải sách bài tập Toán 12 | Giải sbt Toán 12

Điểm uốn: y” = 6x – 6, y” = 0 ⇔ x = 1; y(1) = –2

Suy ra đồ thị có điểm uốn I(1; -2)

Bảng biến thiên:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Đồ thị:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Đồ thị cắt trục hoành tại O(0;0), A(3;0). Đồ thị đi qua điểm B(-1;-4); C(2;-4).

5 tháng 3 2018

Với m = 2 ta có hàm số Giải bài 6 trang 146 sgk Giải tích 12 | Để học tốt Toán 12

- Tập xác định : D = R\{-1}.

- Sự biến thiên :

Giải bài 6 trang 146 sgk Giải tích 12 | Để học tốt Toán 12

⇒ Hàm số đồng biến trên (-∞ ; -1) và (-1 ; +∞).

+ Cực trị : hàm số không có cực trị

+ Tiệm cận :

Giải bài 6 trang 146 sgk Giải tích 12 | Để học tốt Toán 12

⇒ y = 1 là tiệm cận ngang của đồ thị hàm số

Giải bài 6 trang 146 sgk Giải tích 12 | Để học tốt Toán 12

⇒ x = -1 là tiệm cận ngang của đồ thị hàm số.

+ Bảng biến thiên :

Giải bài 6 trang 146 sgk Giải tích 12 | Để học tốt Toán 12

- Đồ thị :

Giải bài 6 trang 146 sgk Giải tích 12 | Để học tốt Toán 12

23 tháng 5 2019

Tập xác định: D = R

y′=0 ⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Hàm số đồng biến trên mỗi khoảng (-1; 0) và (1; + ∞ )

Hàm số nghịch biến trên mỗi khoảng (− ∞ ; −1); (0; 1)

Hàm số đạt cực đại tại x = 0; y CĐ  = 0

Hàm số đạt cực tiểu tại x = 1 hoặc x = -1;  y CT  = −2

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Đồ thị có hai điểm uốn:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Bảng biến thiên:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Đồ thị:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Đồ thị cắt trục hoành tại

17 tháng 1 2017

Với Giải bài 5 trang 146 sgk Giải tích 12 | Để học tốt Toán 12 ; b = 1 thì hàm số trở thành: Giải bài 5 trang 146 sgk Giải tích 12 | Để học tốt Toán 12

- TXĐ: D = R.

- Sự biến thiên:

Giải bài 5 trang 146 sgk Giải tích 12 | Để học tốt Toán 12

+ Giới hạn:

Giải bài 5 trang 146 sgk Giải tích 12 | Để học tốt Toán 12

+Bảng biến thiên:

Giải bài 5 trang 146 sgk Giải tích 12 | Để học tốt Toán 12

Kết luận: Hàm số đồng biến trên Giải bài 5 trang 146 sgk Giải tích 12 | Để học tốt Toán 12

Hàm số nghịch biến trên Giải bài 5 trang 146 sgk Giải tích 12 | Để học tốt Toán 12

Hàm số đạt cực đại tại x = 0; y = 1

Hàm số đạt cực tiểu tại Giải bài 5 trang 146 sgk Giải tích 12 | Để học tốt Toán 12

- Đồ thị:

Giải bài 5 trang 146 sgk Giải tích 12 | Để học tốt Toán 12

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

18 tháng 10 2021

undefinedundefined

5 tháng 11 2018

 

 

Do đó, hàm số đã cho nghịch biến trên tập xác định.

+ Giới hạn:

Giải bài 3 trang 61 sgk Giải tích 12 | Để học tốt Toán 12

⇒ x = 0 (trục Oy) là tiệm cận đứng của đồ thị hàm số

    y = 0 (trục Ox) là tiệm cận ngang của đồ thị hàm số.

+ Bảng biến thiên:

Giải bài 3 trang 61 sgk Giải tích 12 | Để học tốt Toán 12

- Đồ thị:

Giải bài 3 trang 61 sgk Giải tích 12 | Để học tốt Toán 12

16 tháng 5 2019

a) Học sinh tự làm

b) Ta có: y′ = –4 x 3  – 2x

Vì tiếp tuyến vuông góc với đường thẳng y = x/6 – 1 nên tiếp tuyến có hệ số góc là –6. Vì vậy:

–4 x 3  – 2x = –6

⇔ 2 x 3  + x – 3 = 0

⇔ 2( x 3  – 1) + (x – 1) = 0

⇔ (x – 1)(2 x 2  + 2x + 3) = 0

⇔ x = 1(2 x 2  + 2x + 3 > 0, ∀x)

Ta có: y(1) = 4

Phương trình phải tìm là: y – 4 = -6(x – 1) ⇔ y = -6x + 10