Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) phương trình có 2 nghiệm \(\Leftrightarrow\Delta'\ge0\)
\(\Leftrightarrow\left(m-1\right)^2-\left(m-1\right)\left(m+3\right)\ge0\)
\(\Leftrightarrow m^2-2m+1-m^2-3m+m+3\ge0\)
\(\Leftrightarrow-4m+4\ge0\)
\(\Leftrightarrow m\le1\)
Ta có: \(x_1^2+x_1x_2+x_2^2=1\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=1\)
Theo viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2\left(m-1\right)\\x_1x_2=\dfrac{c}{a}=m+3\end{matrix}\right.\)
\(\Leftrightarrow\left[-2\left(m-1\right)^2\right]-2\left(m+3\right)=1\)
\(\Leftrightarrow4m^2-8m+4-2m-6-1=0\)
\(\Leftrightarrow4m^2-10m-3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m_1=\dfrac{5+\sqrt{37}}{4}\left(ktm\right)\\m_2=\dfrac{5-\sqrt{37}}{4}\left(tm\right)\end{matrix}\right.\Rightarrow m=\dfrac{5-\sqrt{37}}{4}\)
Bạn vui lòng đối chiếu đề bạn đang có giúp mình ở hai chữ "x" mình in đậm nhé! Mình sẽ hỗ trợ nhanh nhất có thể!
Đề: Cho phương trình: xx2−(m−3)x−m=3 (1).
a) Chứng minh phương trình có hai nghiệm phân biệt.
b) Tìm m đề hai nghiệm x1, x2 của phương trình thoả mãn hệ thức: 3x(x1+x2)−x1x2≥5.
Xin cảm ơn!
\(\Delta=a^2-4\left(b+2\right)>0\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-a\\x_1x_2=b+2\end{matrix}\right.\) (1)
\(\left\{{}\begin{matrix}x_1-x_2=4\\\left(x_1-x_2\right)^3+3x_1x_2\left(x_1-x_2\right)=28\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1-x_2=4\\64+12x_1x_2=28\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1-x_2=4\\x_1x_2=-3\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_1=3\\x_2=-1\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x_1=1\\x_2=-3\end{matrix}\right.\)
Thế vào (1) để tìm a; b
△'=(-2)2-1(m-1)
=4-m+1
=5-m
Để PT có 2 no pb thì △'>0
⇒5-m>0
⇒m<5
theo vi-ét ta có
\(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=m-1\end{matrix}\right.\)
mà: \(x^2_1x_2+x_1x_2^2-2\left(x_1+x_2\right)=0\)
⇔\(\left(x_1x_2\right)\left(x_1+x_2\right)-2\left(x_1+x_2\right)=0\)
⇔\(\left(m-1\right)4-2\cdot4=0\)
⇔\(4m-4-8=0\)
⇔4m-12=0
⇔4m=12
⇔m=3
Vậy ...
Để pt có hai nghiệm pb \(\Leftrightarrow\Delta>0\)\(\Leftrightarrow4-4\left(m-1\right)>0\)\(\Leftrightarrow2>m\)
Theo viet có:\(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=m-1\end{matrix}\right.\)
Có \(x_1^2+x_2^2-3x_1x_2=2m^2+\left|m-3\right|\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-5x_1x_2=2m^2+\left|m-3\right|\)
\(\Leftrightarrow4-5\left(m-1\right)=2m^2+\left|m-3\right|\)
\(\Leftrightarrow2m^2+\left|m-3\right|-9+5m=0\) (1)
TH1: \(m\ge3\)
PT (1) \(\Leftrightarrow2m^2+m-3-9+5m=0\)
\(\Leftrightarrow2m^2+6m-12=0\)
Do \(m\ge3\Rightarrow\left\{{}\begin{matrix}6m-12\ge6>0\\2m^2>0\end{matrix}\right.\)
\(\Rightarrow2m^2+6m-12>0\)
=>Pt vô nghiệm
TH2: \(m< 3\)
PT (1)\(\Leftrightarrow2m^2-\left(m-3\right)-9+5m=0\)
\(\Leftrightarrow2m^2+4m-6=0\) \(\Leftrightarrow2m^2-2m+6m-6=0\)
\(\Leftrightarrow2m\left(m-1\right)+6\left(m-1\right)=0\)\(\Leftrightarrow\left(2m+6\right)\left(m-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=-3\\m=1\end{matrix}\right.\) (Thỏa)
Vậy...
a: Khi m = -4 thì:
\(x^2-5x+\left(-4\right)-2=0\)
\(\Leftrightarrow x^2-5x-6=0\)
\(\Delta=\left(-5\right)^2-5\cdot1\cdot\left(-6\right)=49\Rightarrow\sqrt{\Delta}=\sqrt{49}=7>0\)
Pt có 2 nghiệm phân biệt:
\(x_1=\dfrac{5+7}{2}=6;x_2=\dfrac{5-7}{2}=-1\)
Theo Vi et ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=m\\x_1x_2=\frac{c}{a}=1\end{cases}}\)
mà \(\left(x_1+x_2\right)^2=m^2\Leftrightarrow x_1^2+x_2^2=m^2-2x_1x_2=m^2-2\)
hay \(\left(x_1+1\right)^2+\left(x_2+1\right)^2=2\)
\(\Leftrightarrow x_1^2+2x_1+1+x_2^2+2x_2+1=2\)
\(\Leftrightarrow\left(x_1^2+x_2^2\right)+2\left(x_1+x_2\right)=0\)
\(\Leftrightarrow m^2-2+2m=0\)
Ta có : \(\Delta=4+8=12\)
\(x_1=\frac{-2-\sqrt{12}}{2};x_2=\frac{-2+\sqrt{12}}{2}\)
m<-2hoặcm>2
Ta có: m2+2m-2=0<=>(m+1)2=3
<=>m=-1+\(\sqrt{3}\) (loại) ; m=-1-\(\sqrt{3}\) (TM)