Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Bạn áp dụng công thức: \(\left(a-b\right)^3=a^3-3a^2b+3ab^2-b^3\) vào lm nhé.
a) \(\left(2x-3\right)^3\)
\(=\left(2x\right)^3-3\left(2x\right)^2.3+3.2x.3^2-3^3\)
\(=8x^3-36x+54x-27\)
c) \(\left(3x-5\right)^5\)
\(=\left(3x\right)^3-3\left(3x\right)^2.5+3.3x.5^2-5^3\)
\(=27x^3-135x^2+225x-125\)
\(\left(2x^2-y\right)^3\)
\(=8x^6-12x^4y+6x^2y^2-y^3\)
Tổng các hệ số là :
\(8+\left(-12\right)+6+\left(-1\right)\)
\(=-4+6-1\)
\(=2-1=1\)
a ) \(\left(2x-3\right)^3=\left(2x\right)^3-3.\left(2x\right)^2.3+3.2x.3^2-3^3=8x^3-36x^2+54x-27\)
Có tổng hệ số là \(8-36+54-27=-1\)
b ) \(\left(x^2+2\right)^4=x^8+8x^6+24x^4+32x^2+16\)
Có tổng hệ số là : \(1+8+24+32+16=81\)
c ) \(\left(3x-5\right)^5=243x^5-2025x^4+6750x^3-11250x^2+9375x-3125\)
Có tổng hệ số là : \(243-2025+6750-11250+9375-3125=-32\)
\(=\left(2x^2\right)^3-3\cdot4x^4\cdot y+3\cdot2x^2\cdot y^2-y^3\)
\(=8x^6-12x^4y+6x^2y^2-y^3\)
\(f\left(1\right)=\left(2+3-4\right)^{2016}-\left(1+1\right)^5=1^{2016}-32=-31\)
Đáp số : -31
tổng các hệ số f(x) sau khi khai triển và rút gọn chính là giá trị của f(x) tại x=1
A=F(1)=\(\left(2.1^5+3.1-4\right)^{2016}-\left(1^7+1^8\right)^5\)
A=-31
vậy tổng các hệ số sau khi khai triển và rút gọn là -31
a: Tổng các hệ số thu được là: \(\left(5\cdot1-2\right)^5=\left(5-2\right)^5=243\)
b: Tổng các hệ số thu được là:
\(\left(1^2+1-2\right)^{2010}+\left(1^2-1+1\right)^{2011}\)
\(=0+\left(1-1+1\right)^{2011}\)
=1
a,\(\left(2x^3y-0,5x^2\right)^3=\left(2x^3y\right)^3-3.\left(2x^3y\right)^2.\left(0,5x^2\right)+3.\left(0,5x^2\right)^2.\left(2x^3y\right)-\left(0,5x^2\right)^3\)
\(=8x^9y^3-6x^8y^2+\frac{3}{2}x^7y-\frac{1}{8}x^6\)
b,\(\left(x-3y\right)\left(x^2+3xy+9y^2\right)=\left(x-3y\right)\left[x^2+x.3y+\left(3y\right)^2\right]\)
\(=x^3-\left(3y\right)^3=x^3-27y^3\)
\(\left(x^2-3\right)\left(x^4+3x^2+9\right)=\left(x^2-3\right)\left[\left(x^2\right)^2+3.x^2+3^2\right]\)
\(=\left(x^2\right)^3-3^3=x^6-27\)
Câu 1: \(3x+2\left(5-x\right)=0\)
\(\Rightarrow3x+10-2x=0\)
\(\Rightarrow x+10=0\)
\(\Rightarrow x=-10\).
Câu 2: \(2x\left(5-3x\right)+2x\left(3x-5\right)-3\left(x-7\right)=3\)
\(\Rightarrow2x\left(5-3x\right)-2x\left(5-3x\right)-3\left(x-7\right)=0\)
\(\Rightarrow\left(2x-2x\right)\left(5-3x\right)-3\left(x-7\right)=3\)
\(\Rightarrow-3\left(x-7\right)=3\)
\(\Rightarrow x-7=-1\)
\(\Rightarrow x=6.\)
Câu 3:
Áp dụng hằng đẳng thức mở rộng có:
\(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
\(=a^3+b^3+c^3-3abc.\)
Câu 4: \(3x^2\left(3x^2-2y^2\right)-\left(3x^2-2y^2\right)\left(3x^2+2y^2\right)\)
\(=\left(3x^2-2y^2\right)\left[3x^2-\left(3x^2+2y^2\right)\right]\)
\(=\left(3x^2-2y^2\right)\left(-2y^2\right)\)
\(=-6x^2y^2+4y^3.\)
Câu 5:
Ta có: \(R=\left(2x-3\right)\left(4+6x\right)-\left(6-3x\right)\left(4x-2\right)\)
\(=\left(8x-12+12x^2-18x\right)-\left(24x-12x^2-12+6x\right)\)
\(=12x^2-10x-12-24x+12x^2+12-6x\)
\(=24x^2-40x.\)
Câu 1: Đặt a/x là m; b/y là n; c/z là p, ta có: m + n + p = 2; 1/m + 1/n + 1/p = 0. Tìm m2 + n2 + p2 ?
Từ 1/m + 1/n + 1/p = 0
=> mnp(1/m + 1/n + 1/p) = 0
<=> mn + np + mp = 0
Mặt khác, ta có (m + n + p)2 = m2 + n2 + p2 + 2(mp + np + mp) = 4
Mà mn + np + mp = 0 => m2 + n2 + p2 + 0 = 4
Trả lời: Vậy a2/x2 + b2/y2 + c2/z2 = 4
a: \(=8x^3-36x^2+54x-27\)
b: \(=\left(x^2+2\right)^4\)
\(=\left(x^4+4x^2+4\right)^2\)
\(=x^8+16x^4+16+8x^6+8x^4+32x^2\)