Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{4^6\cdot9^5+6^9\cdot120}{8^4\cdot3^{12}-6^{11}}\)
\(=\dfrac{2^{12}\cdot3^{10}+2^{12}\cdot3^{10}\cdot5}{2^{12}\cdot3^{12}-2^{11}\cdot3^{11}}\)
\(=\dfrac{2^{13}\cdot3^{11}}{2^{11}\cdot3^{11}\cdot\left(2\cdot3-1\right)}\)
\(=\dfrac{4}{5}\)
a,
\(\dfrac{4^6\cdot9^5+6^9\cdot120}{-8^4\cdot3^{12}-6^{11}}=\dfrac{2^{12}\cdot3^{10}+2^9\cdot3^9\cdot2^3\cdot3\cdot5}{-2^{12}\cdot3^{12}-2^{11}\cdot3^{11}}=\dfrac{2^{12}\cdot3^{10}+2^{12}\cdot3^{10}\cdot5}{-2^{12}\cdot3^{12}-2^{11}\cdot3^{11}}=\dfrac{2^{12}\cdot3^{10}\left(1+5\right)}{-2^{11}\cdot3^{11}\left(2\cdot3-1\right)}=\dfrac{2^{13}\cdot3^{11}}{-2^{11}\cdot3^{11}\left(2\cdot3+1\right)}=\dfrac{2^2}{7}=\dfrac{4}{7}\)
b,
\(\dfrac{1}{1-\dfrac{1}{1-2-1}}+\dfrac{1}{1+\dfrac{1}{1+2-1}}=\dfrac{1}{1-\dfrac{1}{-2}}+\dfrac{1}{1+\dfrac{1}{2}}=\dfrac{1}{1+\dfrac{1}{2}}+\dfrac{1}{1+\dfrac{1}{2}}=\dfrac{2}{\dfrac{3}{2}}=\dfrac{4}{3}\)
Bạn sai rồi nhé ! Điển hình là 2 phân số cuối ! Đang 2.3-1 thì sang phân số tiếp theo bạn lại ghi 2.3+1 ! Nhưng dù sao mk vẫn tick cho bn vì đã giúp mình ! Cái lỗi mk chỉ ra mk có thể tự sửa được . Cảm ơn bn nhiều !
Lời giải: Để 6n+99/3n+4 là phân số tối giản thì 6n+99 chia hết cho 3n+4
6n+99 = 6n+8+91=2(3n+4)+91
do n+3 chia hết cho n+3 => 2(n+3) vậy để 6n+99 chia hết cho n+3thif 91 phai chia hết cho n+3
=>n+3 thuộc vào ước của91 là {1;tự tìm mình nhác quá hihi}
rồi đến đây bạn tự làm nha
nhớ k cho mik đấy hihi
Để \(\frac{6n+8}{2n-1}\)tối giản thì \(\frac{11}{2n-1}\)tối giản \(\Leftrightarrow\)ƯC(11,2n-1)=1,-1
\(\Rightarrow\)2n-1 không chia hết 5\(\Rightarrow\)2n-1\(\ne\)11k(k\(\in\)Z, k\(\ne\)0)
\(\Rightarrow\)n\(\ne\)11k+1:2
Đặt d=ƯCLN(12n+1;30n+2)
=>12n+1 chia hết cho d; 30n+2 chia hết cho d
=>5(12n+1) chia hết cho d; 2(30n+2) chia hết cho d
=>60n+5 chia hết cho d; 60n+4 chia hết cho d
=>(60n+5)-(60n+4) chia hết cho d
=>1 chia hết cho d
=>d=1
=>phân số \(\frac{12n+1}{30n+2}\) là phân số tối giản
Bài 1:
\(\frac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^2}-\frac{5^{10}.7^3-25^3.49^2}{\left(125.7\right)^3+5^9.14^3}=\frac{2^{12}.3^5-\left(2^2\right)^6.\left(3^2\right)^2}{2^{12}.3^6+\left(2^3\right)^4.3^2}-\frac{5^{10}.7^3-\left(5^2\right)^3.\left(7^2\right)^2}{\left(5^3.7\right)^3+5^9.2^3.7^3}\)
\(=\frac{2^{12}.3^5-2^{12}.3^4}{2^{12}.3^6+2^{12}.3^2}-\frac{5^{10}.7^3-5^6.7^4}{5^9.7^3+5^9.2^3.7^3}=\frac{2^{12}.3^4\left(3-1\right)}{2^{12}.3^2\left(3^4+1\right)}-\frac{5^6.7^3\left(5^4-7\right)}{5^9.7^3\left(1+2^3\right)}=\frac{3^2.2}{82}-\frac{618}{5^3.9}\)
\(=\frac{9}{41}-\frac{206}{375}=\)
a) n - 5 / n + 1
=> n + 1 - 6 / n + 1
=> 6 / n + 1
=> n + 1 thuộc Ư(6) = {1;2;3;6;-1;-2;-3;-6}
b) A tối giản => bỏ số âm
A cô thể thuộc {1;2;3;6}
Vì 1 - 5 là số âm => bỏ 1
Vì 2 - 5 âm => bỏ 2
Vì 3 - 5 âm => bỏ 5
Vậy để A tối giản => n = 6