Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Xét tứ giác ANBE có
M là trung điểm của AB
M là trung điểm của NE
Do đó: ANBE là hình bình hành
mà NA=NB
nên ANBE là hình thoi
a) Ta có P,N là trung điểm của AC và BC nên PN// AB và PN =AM=BM=AB/2
=> PN // AM
=> PQ // AM
=> PMAQ là hình thang
b) hình nào là hình thang cân?
c) Ta có PQ// AB và PQ=AB= 2AM = 2PN
=> ABPQ là hình bình hành
d) TA có AM // PN và AM = PN
=> AMPN là hình bình hành
Lại có AB=AC
=> AM = AN
=> AMPN là hình thoi
e) Do ABC cân tại A có AP là đường trung tuyến
=> AP đồng thời là đường cao
=> góc APC = 90 độ
Xét tứ giác APCQ có 2 đường chéo AC và PQ cắt nhau tại trung điểm N mỗi đương
=> APCQ là hình bình hành
Có APC = 90 độ
=> APCQ là hình chữ nhật
a: Xét tứ giác ABFC có
M là trung điểm chung của AF và BC
góc BAC=90 độ
=>ABFC là hình chữ nhật
b: \(AC=\sqrt{10^2-6^2}=8\left(cm\right)\)
\(S_{ABC}=\dfrac{1}{2}\cdot6\cdot8=3\cdot8=24\left(cm^2\right)\)
c: Xét ΔBAC có BM/BC=BD/BA
nên MD//AC và MD=1/2AC
=>ME//AC và ME=AC
=>AEMC là hình bình hành