Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình hoành độ giao điểm là:
\(x^2-2mx+m^2-m=0\)
a: Để (P) cắt (d) tại hai điểm phân biệt thì \(\left(-2m\right)^2-4\left(m^2-m\right)>0\)
=>4m>0
hay m>0
b: Để (P) cắt (d) tại hai điểm nằm về hai phía của trục tung thì \(m^2-m< 0\)
=>0<m<1
\(\left\{{}\begin{matrix}x=5-y\\y\left(5-y\right)=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=1\\y=4\end{matrix}\right.\\\left\{{}\begin{matrix}x=4\\y=1\end{matrix}\right.\end{matrix}\right.\)
a) Thay m = -2 vào (P) ta có:
\(y=\left(-2-3\right)x+\left(-2\right).\\ \Leftrightarrow y=-5x-2.\)
i) + \(y=-5x-2.\)
\(Cho\) \(x=0.\Rightarrow y=-2.\)
\(Cho\) \(y=0.\Rightarrow x=\dfrac{-2}{5}.\)
+ \(y=2x^2.\)
\(x\) | -2 | -1 | 0 | 1 | 2 |
\(y=2x^2\) | 8 | 2 | 0 | 2 | 8 |
Bài 5:
a: Để đây là hàm số bậc nhất thì m+5<>0
hay m<>-5
ĐKXĐ: x>=-3/2
\(2x-3\sqrt{2x+3}-7=0\)
=>\(2x+3-3\sqrt{2x+3}-10=0\)
=>\(2x+3-5\sqrt{2x+3}+2\sqrt{2x+3}-10=0\)
=>\(\sqrt{2x+3}\left(\sqrt{2x+3}-5\right)+2\left(\sqrt{2x+3}-5\right)=0\)
=>\(\left(\sqrt{2x+3}-5\right)\left(\sqrt{2x+3}+2\right)=0\)
=>\(\sqrt{2x+3}-5=0\)
=>\(\sqrt{2x+3}=5\)
=>2x+3=25
=>2x=22
=>\(x=\dfrac{22}{2}=11\)