Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2^0+2^1+2^2\)\(+2^3+...+\)\(2^{50}\)
\(2A=2+2^2+2^3+...+2^{51}\)
\(2A-A=A=2^{51}-2^0\)
\(B=5+5^2+5^3+...+5^{99}+5^{100}\)
\(5B=5^2+5^3+5^4+...+5^{100}+5^{101}\)
\(5B-B=4B=5^{101}-5\)
\(B=\frac{5^{101}-5}{4}\)
\(C=3-3^2+3^3-3^4+...+\)\(3^{2007}-3^{2008}+3^{2009}-3^{2010}\)
\(3C=3^2-3^3+3^4-3^5+...-3^{2008}+3^{2009}-3^{2010}+3^{2011}\)
\(3C+C=4C=3^{2011}+3\)
\(C=\frac{3^{2011}+3}{4}\)
\(S_{100}=5+5\times9+5\times9^2+5\times9^3+...+5\times9^{99}\)
\(S_{100}=5\times\left(1+9+9^2+9^3+...+9^{99}\right)\)
\(9S_{100}=5\times\left(9+9^2+9^3+...+9^{99}+9^{100}\right)\)
\(9S_{100}-S_{100}=8S_{100}=5\times\left(9^{100}-1\right)\)
\(S_{100}=\frac{5\times\left(9^{100}-1\right)}{8}\)
A=20+21+22+23+...++23+...+250250
2�=2+22+23+...+2512A=2+22+23+...+251
2�−�=�=251−202A−A=A=251−20
�=5+52+53+...+599+5100B=5+52+53+...+599+5100
5�=52+53+54+...+5100+51015B=52+53+54+...+5100+5101
5�−�=4�=5101−55B−B=4B=5101−5
�=5101−54B=45101−5
�=3−32+33−34+...+C=3−32+33−34+...+32007−32008+32009−3201032007−32008+32009−32010
3�=32−33+34−35+...−32008+32009−32010+320113C=32−33+34−35+...−32008+32009−32010+32011
3�+�=4�=32011+33C+C=4C=32011+3
�=32011+34C=432011+3
�100=5+5×9+5×92+5×93+...+5×999S100=5+5×9+5×92+5×93+...+5×999
�100=5×(1+9+92+93+...+999)S100=5×(1+9+92+93+...+999)
9�100=5×(9+92+93+...+999+9100)9S100=5×(9+92+93+...+999+9100)
9�100−�100=8�100=5×(9100−1)9S100−S100=8S100=5×(9100−1)
�100=5×(9100−1)8S100=85×(9100−1)
b10:
1.\(A=\left(\frac{999-1}{2}+1\right).\frac{999+1}{2}=250000\)
2. \(B=\left(1+3+...+2017\right)-\left(2+4+...+2016\right)\)
\(=2017.\frac{2017+1}{2}-\left(\frac{2016-2}{2}+1\right).\frac{2016+2}{2}\)
đến đây bạn bấm máy đi nhé!
3. \(C=3+3^2+3^3+...+3^{99}\left(1\right)\)
Nhân hai vế của (1) vs số 3 ta được:
\(3C=3^2+3^3+...+3^{100}\left(2\right)\)
Lấy (2)-(1) theo vế ta được: \(3C-C=3^{100}-3\)
=> C=\(\frac{3^{100}-3}{2}\)
4. Làm giống hết câu 3 luôn nhé, chỉ là nhân với 4 thôi.
a) \(\frac{2^3.3^4}{2^2.3^2.5}=\frac{2.3^2}{1.1.5}=\frac{18}{5}\)
b) \(\frac{2^4.5^2.11^2.7}{2^3.5^3.7^2.11}=\frac{2.1.11.1}{1.5.7.1}=\frac{22}{35}\)
\(\frac{2^{10}\cdot3^{10}-2^{10}\cdot3^9}{2^9\cdot3^{10}}=\frac{2^{10}\cdot3^9\left(3-1\right)}{2^9\cdot3^{10}}=\frac{2^{11}\cdot3^9}{2^9\cdot3^{10}}=\frac{2^2}{3}=\frac{4}{3}\)