Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, Ta có: \(\dfrac{2727}{2323}=\dfrac{27.101}{23.101}=\dfrac{27}{23}=\dfrac{27.1010101}{23.1010101}=\dfrac{27272727}{23232323}\)
2, \(3^{n+2}+2^{n+3}+3^n+2^{n+1}\)
\(=3^n.3^2+3^n+2^n.2^3+2^n.2\)
\(=3^n\left(3^2+1\right)+2^n\left(2^3+2\right)\)
\(=3^n.10+2^n.10=\left(3^n+2^n\right).10⋮10\forall n\in N\)
Vậy...
1)\(\dfrac{27272727}{23232323}=\dfrac{2727.10001}{2323.10001}=\dfrac{2727}{2323}\)
2)
\(3^{n+2}+2^{n+3}+3^n+2^{n+1}\)
\(=3^n.3^2+2^n.2^3+3^n.1+2^n.2\)
\(=3^n.9+2^n.8+3^n.1+2^n.2\)
\(=3^n\left(9+1\right)+2^n\left(8+2\right)\)
\(=3^n.10+2^n.10\)
\(=10\left(3^n+2^n\right)⋮10\left(đpcm\right)\)
Câu 2:
n lẻ nên n=2k+1
\(n^2+n+1\)
\(=\left(2k+1\right)^2+2k+1+1\)
\(=4k^2+4k+1+2k+2\)
\(=4k^2+6k+3=2\left(2k^2+3k\right)+3⋮̸2\)
hay \(n^2+n+1⋮̸8\)
a) nếu n là số lẻ
n+3 sẽ bằng 1 số lẻ => (n+3).(n+6) chia hết cho 2
nếu n là số chẵn
n+6 sẽ bằng 1 số chẵn=>(n+3).(n+6) chia hết cho 2
a) ( n + 3 ) . ( n + 6 )
+) Xét n chẵn => n + 6 là số chẵn => ( n + 3 ) . ( n + 6 ) chia hết cho 2
+) Xét n lẻ => n + 3 là số chẵn => ( n + 3 ) . ( n + 6 ) chia hết cho 2
+) Xét n bằng 0 => n + 6 là số chẵn => ( n + 3 ) . ( n + 6 ) chia hết cho 2
Vậy với mọi n thì ( n + 3 ) . ( n + 6 ) luôn chia hết cho 2
b) n . ( n + 5 )
+) Xét n chẵn => n chia hết cho 2 => n ( n + 5 ) chia hết cho 2
+) Xét n lẻ => n + 5 là số chẵn => n ( n + 5 ) chia hết cho 2
+) Xét n bằng 0 => n ( n + 5 ) = 0 => n ( n + 5 ) chia hết cho 2
Vậy với mọi n thì n ( n + 5 ) luôn chia hết cho 2
a, Ta có:
\(3^{2n+1}+2^{n+2}=9^n.3+2^n.4\)
\(=9^n.3-2^n.3+2^n.7=3\left(9^n-2^n\right)+2^n.7\)
Ta lại có:
\(9^n-2^n⋮9-2=7;2n.7⋮7\)
\(\Rightarrow3^{2n+1}+2^{n+2}⋮7\left(dpcm\right)\)
ĐỀ BÀI SAI RỒI BẠN !
Thầy mình ra bài này mà