K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 5 2018

Đáp án: C.

Vì y' = 3 x 2  + 4 > 0, ∀ x ∈ R.

25 tháng 11 2021

C

25 tháng 11 2021

C. Hàm số đồng biến trên R.     

20 tháng 8 2017

8 tháng 6 2017

Đáp án: C.

Vì y' = 3 x 2  + 4 > 0, x R.

27 tháng 8 2018

Đáp án D

NV
14 tháng 1 2021

\(y'=3x^2+m+\dfrac{1}{x^6}\ge0\) ; \(\forall x>0\)

\(\Leftrightarrow3x^2+\dfrac{1}{x^6}\ge-m\)

\(\Leftrightarrow-m\le\min\limits_{x>0}\left(3x^2+\dfrac{1}{x^6}\right)\)

Ta có: \(3x^2+\dfrac{1}{x^6}=x^2+x^2+x^2+\dfrac{1}{x^6}\ge4\sqrt[4]{\dfrac{x^6}{x^6}}=4\)

\(\Rightarrow-m\le4\Rightarrow m\ge-4\)

26 tháng 5 2019

Chọn B.

Hàm số (I): , ∀ D = R \ {-1} nên hàm số đồng biến trên từng khoảng xác định của nó.

Hàm số (II): y’ = -4x3 + 2x. y' = 0 <=> - 4x3 + 2x = 0 <=>  nên hàm số không đồng biến trên khoảng xác định của nó.

 

Hàm số (III): y’ = 3x2 – 3.

y’ = 0 <=> 3x2 – 3 = 0 <=> x = ±1 nên hàm số không đồng biến trên khoảng xác định của nó.

22 tháng 10 2019

Đáp án A.

Tập xác định D = R.

y' = -3x2 + 3

y’ = 0  -3x2 + 3 = 0  x = 1 hoặc x = -1.

Bảng biến thiên:

Từ bảng biến thiên ta thấy hàm số đồng biến trên (-1; 1)