K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) \(\cos \frac{{3\pi }}{7} = 0,22252\); \(\tan ( - {37^ \circ }25') = 0,765018\)      

b) \(179^o23'30"\approx3,130975234\left(rad\right)\)

c) \(\frac{{7\pi }}{9} = {140^ \circ }\)

QT
Quoc Tran Anh Le
Giáo viên
21 tháng 9 2023

a) Ta thấy \(\sin t = {y_M}\) là tung độ của điểm M trên đường tròn lượng giác và c\(\cos t = {x_M}\) là hoành độ của điểm M trên đường tròn lượng giác.

Với mỗi điểm M xác định, ta chỉ có 1 tung độ và hoành độ duy nhất

Nên ta chỉ xác định duy nhất giá trị sint và cost.

b,

Nếu \(t \ne \frac{\pi }{2} + k\pi ,k \in \mathbb{Z}\), ta có: \(\tan t = \frac{{\sin t}}{{{\rm{cost}}}} = \frac{{{y_M}}}{{{x_M}}}\)( \({x_M} \ne 0\))

Nếu \(t \ne k\pi ,k \in \mathbb{Z}\), ta có: \(\cot t = \frac{{{\rm{cost}}}}{{{\rm{sint}}}} = \frac{{{x_M}}}{{{y_M}}}\)( \({y_M} \ne 0\))

Do \({x_M}\), \({y_M}\)xác định duy nhất nên \(\tan t\), \(\cot t\)xác định duy nhất.

Chọn D

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

Giả sử số đo ba góc của tam giác lần lượt là \({u_1};{u_1}.2 = 2{u_1};{u_1}{.2^2} = 4{u_1}\left( {{u_1} > 0} \right)\).

Tổng số đo ba góc của một tam giác bằng \(\pi \) nên ta có phương trình:

\({u_1} + 2{u_1} + 4{u_1} = \pi  \Leftrightarrow 7{u_1} = \pi  \Leftrightarrow {u_1} = \frac{\pi }{7}\)

Vậy số đo các góc của tam giác đó lần lượt là: \(\frac{\pi }{7};\frac{{2\pi }}{7};\frac{{4\pi }}{7}\).

Chọn D.

HQ
Hà Quang Minh
Giáo viên
24 tháng 8 2023

\(a,\dfrac{\pi}{12}=\dfrac{180\cdot\dfrac{\pi}{12}}{\pi}=15^o\\ b,-5=\dfrac{-180\cdot5}{\pi}=\left(-\dfrac{900}{\pi}\right)^o\\ c,\dfrac{13\pi}{9}=\dfrac{180\cdot\dfrac{13\pi}{9}}{\pi}=260^o\)

HQ
Hà Quang Minh
Giáo viên
25 tháng 8 2023

\(a,cos\left(\dfrac{21\pi}{6}\right)=cos\left(3\pi+\dfrac{\pi}{2}\right)=cos\left(\pi+\dfrac{\pi}{2}\right)=-cos\left(\dfrac{\pi}{2}\right)=0\\ b,sin\left(\dfrac{129\pi}{4}\right)=sin\left(32\pi+\dfrac{\pi}{4}\right)=sin\left(\dfrac{\pi}{4}\right)=\dfrac{\sqrt{2}}{2}\\ c,tan\left(1020^o\right)=tan\left(5\cdot180^o+120^o\right)=tan\left(120^o\right)=-\sqrt{3}\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) Ta có:

\(\begin{array}{l}{360^ \circ } = 360.\frac{\pi }{{180}} = 2\pi \\ - {450^ \circ } = 450.\frac{\pi }{{180}} = \frac{5}{2}\pi \end{array}\)

b)\(3\pi  = 3\pi .{\left( {\frac{{180}}{\pi }} \right)^ \circ } = {540^ \circ }\)

\( - \frac{{11\pi }}{5} = \left( { - \frac{{11\pi }}{5}} \right).{\left( {\frac{{180}}{\pi }} \right)^ \circ } =  - {396^ \circ }\)

21 tháng 9 2023

a) Ta có: \(\frac{{\frac{{2\pi }}{3}}}{{2\pi }} = \frac{1}{3}\). Ta chia đường tròn thành 3 phần bằng nhau. Khi đó điểm \({M_2}\) là điểm biểu diễn bởi góc có số đo \(\frac{{2\pi }}{3}\).

b) Ta có \( - \frac{{11\pi }}{4} =  - \frac{{3\pi }}{4} + \left( { - 1} \right).2\pi \). Do đó điểm biểu diễn bởi góc \( - \frac{{11\pi }}{4}\) trùng với góc \( - \frac{{3\pi }}{4}\) và là điểm \({M_3}\).

c)  Ta có \(\frac{{150}}{{180}} = \frac{5}{6}\). Ta chia nửa đường tròn thành 6 phần bằng nhau. Khi đó P là điểm biểu diễn bởi góc \({150^0}\)

d) Ta có \( - {225^0} =  - {180^0} - {45^0}\). Do đó điểm biểu diễn N là điểm biểu diễn bởi góc \( - {225^0}\)

 

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) Tập xác định của hàm số là \(D = \mathbb{R}\;\backslash \left\{ {k\pi {\rm{|}}\;k\; \in \;\mathbb{Z}} \right\}\)

Do đó, nếu x thuộc tập xác định D thì –x cũng thuộc tập xác định D

Ta có: \(f\left( { - x} \right) = \cot \left( { - x} \right) =  - \cot x =  - f\left( x \right),\;\forall x\; \in \;D\)

Vậy \(y = \cot x\) là hàm số lẻ.

b)

   \(x\)

\(\frac{\pi }{6}\)

\(\frac{\pi }{4}\)

\(\frac{\pi }{3}\)

\(\frac{\pi }{2}\)

\(\frac{{2\pi }}{3}\)

\(\frac{{3\pi }}{4}\)

\(\frac{{5\pi }}{6}\)

  \(\cot x\)

  \(\sqrt 3 \)

    \(1\)

\(\frac{{\sqrt 3 }}{3}\)

     \(0\)

      \( - \frac{{\sqrt 3 }}{3}\)

    \( - 1\)

\( - \sqrt 3 \)

 c) Từ đồ thị trên, ta thấy hàm số \(y = \cot x\) có tập xác định là \(\mathbb{R}\backslash \left\{ {k\pi {\rm{|}}\;k\; \in \;\mathbb{Z}} \right\}\), tập giá trị là \(\mathbb{R}\) và nghịch biến trên mỗi khoảng \(\left( {k\pi ;\pi  + k\pi } \right)\).