K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2023

\(2x^2-6x-3=0\)

\(\Delta'=\left(-3\right)^2+3.2=15>0\)

⇒ Phương trình có hai nghiệm phân biệt với mọi m.

Theo hệ thức viét ta có : \(\left\{{}\begin{matrix}x_1+x_2=3\\x_1.x_2=-\dfrac{3}{2}\end{matrix}\right.\)

Ta có : \(B=3x_1x_2-x_1^2-x_2^2=-\left(x_1+x_2\right)^2+5x_1x_2=-9+5.\left(-\dfrac{3}{2}\right)=\dfrac{135}{2}\)

Vậy \(B=-\dfrac{135}{2}\) với hai nghiệm phân biệt thỏa mãn.

 

25 tháng 3 2023

ơ giỏi vậy

25 tháng 3 2023

\(2x^2-6x-3=0\)

\(\Delta'=3^2+3.2=15>0\)

⇒ Phương trình có hai nghiệm phân biệt.

Theo hệ thức viét có : \(\left\{{}\begin{matrix}x_1+x_2=3\\x_1x_2=-\dfrac{3}{2}\end{matrix}\right.\)

Ta có : \(A=x_1^2x_2^2-2x_1-2x_2=\left(x_1x_2\right)^2-2\left(x_1+x_2\right)=\left(-\dfrac{3}{2}\right)^2-2.3=-\dfrac{15}{4}\)

Vậy \(A=-\dfrac{15}{4}\) thì thỏa mãn điều kiện bài ra.

Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{6}{2}=-3\\x_1x_2=\dfrac{-3}{2}\end{matrix}\right.\)

Ta có: \(\dfrac{2}{x_1^2}+\dfrac{2}{x_2^2}\)

\(=\dfrac{2x^2_2+2x_1^2}{\left(x_1\cdot x_2\right)^2}\)

\(=\dfrac{2\left[\left(x_1+x_2\right)^2-2x_1x_2\right]}{\left(-\dfrac{3}{2}\right)^2}=\dfrac{2\cdot\left[\left(-3\right)^2-2\cdot\dfrac{-3}{2}\right]}{\dfrac{9}{4}}\)

\(=\dfrac{2\cdot12}{\dfrac{9}{4}}=24\cdot\dfrac{4}{9}=\dfrac{96}{9}=\dfrac{32}{3}\)

23 tháng 2 2023

5 tháng 6 2018

\(\hept{\begin{cases}x_1+x_2=2\\x_1.x_2=-5\end{cases}}\)

\(B=x_1^2+x_2^2=\left(x_2+x_2\right)^2-2x_1.x_2=2^2+2.5=14\)

Câu C phân tích tương tự

21 tháng 3 2022

Cho phương trình: 5 x^2-2\sqrt{5}x+1 = 05x2−25​x+1=0.

Điền số thích hợp vào ô trống:

Biệt thức \Delta=Δ=

×

.

Nghiệm x=x=

a) Ta có: \(x^2-11x-26=0\)

nên a=1; b=-11; c=-26

Áp dụng hệ thức Viet, ta được:

\(x_1+x_2=\dfrac{-b}{a}=\dfrac{-\left(-11\right)}{1}=11\)

và \(x_1x_2=\dfrac{c}{a}=\dfrac{-26}{1}=-26\)

 

Đề bài yêu cầu gì vậy bạn?

28 tháng 3 2021

rồi đó bạn.

 

6 tháng 4 2022

giải giùm mình ạ:(

 

NV
6 tháng 4 2022

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{3}{2}\\x_1x_2=-\dfrac{1}{2}\end{matrix}\right.\)

\(A=\dfrac{1}{x_1-3}+\dfrac{1}{x_2-3}=\dfrac{x_2-3+x_1-3}{\left(x_1-3\right)\left(x_2-3\right)}=\dfrac{x_1+x_2-6}{x_1x_2-3\left(x_1+x_2\right)+9}\)

\(=\dfrac{\dfrac{3}{2}-6}{-\dfrac{1}{2}-3.\dfrac{3}{2}+9}=...\) (em tự bấm máy)

\(B=x_1^2x_2-4-x_1x_2+x_1x_2^2=x_1x_2\left(x_1+x_2\right)-4-x_1x_2\)

\(=-\dfrac{1}{2}.\dfrac{3}{2}-4-\left(-\dfrac{1}{2}\right)=...\)

\(C=1-\left(x_1^2+x_2^2\right)=1-\left(x_1+x_2\right)^2+2x_1x_2=1-\left(\dfrac{3}{2}\right)^2+2.\left(-\dfrac{1}{2}\right)=...\)

\(D=x_1^3x_2^3+x_1^3+x_2^3=\left(x_1x_2\right)^3+\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)\)

\(=\left(-\dfrac{1}{2}\right)^3+\left(\dfrac{3}{2}\right)^3-3.\left(-\dfrac{1}{2}\right).\dfrac{3}{2}=...\)

a: Th1: m=0

=>-2x-1=0

=>x=-1/2

=>NHận

TH2: m<>0

Δ=(-2)^2-4m(m-1)=-4m^2+4m+4

Để phương trình có nghiệm duy nhất thì -4m^2+4m+4=0

=>\(m=\dfrac{1\pm\sqrt{5}}{2}\)

b: Để PT có hai nghiệm phân biệt thì -4m^2+4m+4>0

=>\(\dfrac{1-\sqrt{5}}{2}< m< \dfrac{1+\sqrt{5}}{2}\)

A=(x1-x2)^2-x1^2+x1(x1+x2)

=(x1-x2)^2+x1x2

=(x1+x2)^2-x1x2

=(1/2)^2-(-1/4)=1/4+1/4=1/2