K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2019

\(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{99\cdot100}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}=\frac{1}{2}-\frac{1}{100}< \frac{1}{2}\)

8 tháng 7 2018

A=1/2-1/3+1/3-1/4+...+1/149-1/150

=1/2-1/150

=37/75

8 tháng 7 2018

B=3A=37/25

8 tháng 8 2017

giúp mk với ai xong  trước mk k cho nha

3 tháng 5 2017

sakura ???

3 tháng 5 2017

De sai o dau phai hok ban. Phien ban xem lai giup.Toi mik giai cho

9 tháng 7 2018

Ta có 1/2*3=1/2-1/3;

         1/3*4=1/3-1/4

       ......................(tương tự với các số khác)

         1/149*150=1/149-1/150

=>A=1/2-1/3+1/3-1/4+1/4-1/5+...-1/149+1/149-1/150=1/2-1/150

A=75/150-1/150=74/150=37/75

Vậy A= 37/75

1 tháng 11 2021

\(2+2^2+...+2^{100}\\ =\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\\ =2\left(1+2\right)+2^3\left(1+2\right)+...+2^{99}\left(1+2\right)\\ =\left(1+2\right)\left(2+2^3+...+2^{99}\right)\\ =3\left(2+2^3+...+2^{99}\right)⋮3\)

1 tháng 11 2021

Mk đang hỏi tại sao lại có phần (1+2) mà bạn. Bạn biết thì chỉ mk với

NV
10 tháng 2 2020

\(A=\frac{1}{5^2}+\frac{2}{5^3}+\frac{3}{5^4}+...+\frac{99}{5^{100}}\)

\(5A=\frac{1}{5}+\frac{2}{5^2}+\frac{3}{5^3}+...+\frac{99}{5^{99}}\)

Trừ dưới cho trên:

\(4A=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{99}}-\frac{99}{5^{100}}\)

\(20A=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{98}}-\frac{99}{5^{99}}\)

Lại trừ dưới cho trên:

\(16A=1-\frac{100}{5^{99}}+\frac{99}{5^{100}}\)

\(\Rightarrow A=\frac{1}{16}-\frac{1}{16.5^{99}}\left(100-\frac{99}{5}\right)< \frac{1}{16}\) do \(100-\frac{99}{5}>0\)

27 tháng 7 2016

Đặt A = 1 + 2 + 22 + 23 + ... + 299 + 2100

2A = 2 + 22 + 23 + 24 + ... + 2100 + 2101

2A - A = (2 + 22 + 23 + 24 + ... + 2100 + 2101) - (1 + 2 + 22 + 23 + ... + 299 + 2100)

A = 2101 - 1 (đpcm)

27 tháng 7 2016

Đặt A = 1 + 2 + 22 + 23 + ... + 299 + 2100

2A = 2 + 22 + 23 + 24 + ... + 2100 + 2101

2A - A = (2 + 22 + 23 + 24 + ... + 2100 + 2101) - (1 + 2 + 22 + 23 + ... + 299 + 2100)

A = 2101 - 1 (đpcm)