Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) Xét ΔNMQ và ΔNEQ có
NM=NE(gt)
\(\widehat{MNQ}=\widehat{ENQ}\)
NQ chung
Do đó: ΔNMQ=ΔNEQ(c-g-c)
Suy ra: QM=QE(hai cạnh tương ứng)
Bài 1:
b) Ta có: ΔNMQ=ΔNEQ(cmt)
nên \(\widehat{NMQ}=\widehat{NEQ}\)(hai góc tương ứng)
hay \(\widehat{NEQ}=90^0\)
Bài 5:
f(x) có 1 nghiệm x - 2
=> f (2) = 0
\(\Rightarrow a.2^2-a.2+2=0\)
\(\Rightarrow4a-2a+2=0\)
=> 2a + 2 = 0
=> 2a = -2
=> a = -1
Vậy:....
P/s: Mỗi lần chỉ đc đăng 1 câu hỏi thôi! Bạn vui lòng đăng bài hình trên câu hỏi khác nhé!
a)Ta có △MIP cân tại M nên ˆMNI=ˆMPIMNI^=MPI^
Xét △MIN và △MIP có:
ˆNMI=ˆPMINMI^=PMI^
MI : cạnh chung
ˆMNI=ˆMPIMNI^=MPI^
Nên △MIN = △MIP (c.g.c)
b)Gọi O là giao điểm của EF và MI
Vì △MNP là tam giác cân và MI là đường phân giác của △MIP
Suy ra MI đồng thời là đường cao của △MNP
Nên ˆMOE=ˆMOF=90oMOE^=MOF^=90o
Xét △MOE vuông tại O và △MOF vuông tại O có:
OM : cạnh chung
ˆEMO=ˆFMOEMO^=FMO^(vì MI là đường phân giác của △MIP và O∈∈MI)
Suy ra △MOE = △MOF (cạnh góc vuông – góc nhọn kề)
Nên ME = MF
Vậy △MEF cân
tham khảo
a: Xét ΔBAD và ΔBMD có
BA=BM
góc ABD=góc MBD
BD chung
=>ΔBAD=ΔBMD
b: Xét ΔBME và ΔBAC có
góc BME=góc BAC
BM=BA
góc EBM chung
=>ΔBME=ΔBAC
=>BE=BC
=>ΔBEC cân tại B
Cho em hỏi với ạ: Tại sao lại khẳng định được BA = BM thế ạ;-;?
Qua đỉnh A kẻ đt xy sao cho xy ko cắt BC => xy // BC
Mà BD và CE vuông xy (gt)
=> BD và CE vuông BC (từ vg góc đến //)
=> ^DBC = 90 độ và ^ECB = 90 độ
Xét tam giác ABC vuông tại A: AB = AC (gt) => tam giác ABC vuông cân tại A
=> ^ABC = ^ACB (tc tg cân)
Lại có: ^ABC + ^ABD = ^DBC = 90 độ
^ACB + ^ACE = ^ECB = 90 độ
=> ^ABD = ^ACE
Xét tam giác ABD và tam giác ACE:
+ AB = AC (gt)
+ ^ABD = ^ACE
+ ^ADB = ^AEC (=90 độ)
=> tam giác ABD = tam giác ACE (ch - gn)
mình nghĩ đề là tìm n nguyên để biểu thức nhận giá trị nguyên nhé
Ta có : \(B=\dfrac{2n+1}{n-2}=\dfrac{2\left(n-2\right)+5}{n-2}=2+\dfrac{5}{n-2}\)
Vì 2 nguyên nên \(\dfrac{5}{n-2}\)cũng nguyên
\(\Rightarrow n-2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
n - 2 | 1 | -1 | 5 | -5 |
n | 3 | 1 | 7 | -3 |
Mình không nhìn thấy câu hỏi, giờ mới thấy bạn ạ
Do mở rộng cạnh của thửa đất về cả bốn phía nên thửa đất mới sau khi mở rộng cũng là hình vuông. mỗi cạnh của thửa đất lúc sau đã tăng :
0,5 x 2 = 1 (m)
Gọi cạnh hình vuông lúc đầu là x đk x > 0
Thì cạnh hình vuông lúc sau là : x + 1
theo bài ra ta có : (x + 1)( x + 1) - x2 = 20
x2 + x + x + 1 - x2 = 20
2x = 20 -1
2x = 19
x = 19: 2
x = 9,5
Kết luận cạnh hình vuông lúc đầu là 9,5 m
a) Dễ dàng c/m đc tam giác MED = tam giác CEN
=> MD = CN (2 cạnh tương ứng)
b) Gọi O là giao điểm của CE và DM
Tam giác MED = tam giác CEN
=> Góc EMD = Góc ECN (2 góc tương ứng)
Mà: \(\left\{{}\begin{matrix}\widehat{EOM}=\widehat{COD}\left(đối-đỉnh\right)\\\widehat{EOM}+\widehat{EMD}=90^0\end{matrix}\right.\)
=> Góc ECN + Góc COD = 90o
=> Góc COM = 90o
=> MD vuông góc CN
a) Ta chứng minh đc tam giác MED = tam giác CEN
=> MD = CN (2 cạnh tương ứng)
b) Gọi O là giao điểm của CE và DM
Tam giác MED = tam giác CEN
=> Góc EMD = Góc ECN (2 góc tương ứng)
Mà: {ˆEOM=ˆCOD(đối−đỉnh)ˆEOM+ˆEMD=900{EOM^=COD^(đối−đỉnh)EOM^+EMD^=900
=> Góc ECN + Góc COD = 90o
=> Góc COM = 90o
=> MD vuông góc CN