K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2017

cái nay chịu

CHÚC BẠN HỌC GIỎI

TK MÌNH NHÉ

20 tháng 3 2017

minh biết rồi BEC = 90o nhé đảm bảo đúng 

CHÚC BẠN HỌC GIỎI

TK MÌNH NHÉ

a: Xét ΔABF vuông tại A và ΔDAE vuông tại D có

AB=DA

AF=DE

=>ΔABF=ΔDAE

b: ΔABF=ΔDAE

=>góc ABF=góc DAE

=>góc FAE+góc AFB=90 độ

c; Gọi giao của AE và FB là O

góc FAE+góc AFB=90 độ

=>góc OAF+góc OFA=90 độ

=>AE vuông góc BF tại O

Bài 2: 

a) Xét ΔABC có 

\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\left(AM=AN;AB=AC\right)\)

Do đó: MN//BC(Định lí Ta lét đảo)

Xét tứ giác BMNC có MN//BC(gt)

nên BMNC là hình thang có hai đáy là MN và BC(Định nghĩa hình thang)

Hình thang BMNC có \(\widehat{B}=\widehat{C}\)(ΔABC cân tại A)

nên BMNC là hình thang cân(Dấu hiệu nhận biết hình thang cân)

a: Xét ΔABE và ΔADC co

AB/AD=AE/AC

góc A chung

=>ΔABE đồng dạng vói ΔADC

b: ΔABE đồng dạng vói ΔADC

=>AB/AD=AE/AC=BE/DC

=>AB*DC=AD*BE

c: BE/DC=AB/AD

=>10/CD=8/12=2/3

=>CD=15cm

d: Xét ΔIBC và ΔIDE có

góc ICB=góc IED

góc BIC=góc DIE

=>ΔIBC đồng dạng với ΔIDE

=>IB/ID=IC/IE

=>IB*IE=ID*IC

29 tháng 10 2023

a:

\(BE=EC=\dfrac{BC}{2}\)

\(AF=FD=\dfrac{AD}{2}\)
\(AB=CD=\dfrac{AD}{2}\)

Do đó: BE=EC=AF=FD=AB=CD

Xét tứ giác ABEF có

BE//AF

BE=AF

Do đó: ABEF là hình bình hành

Hình bình hành ABEF có BE=BA

nên ABEF là hình thoi

=>BF\(\perp\)AE
b: Xét ΔABF có AB=AF và \(\widehat{BAF}=60^0\)

nên ΔABF đều

=>\(\widehat{AFB}=60^0\)

\(\widehat{BFD}+\widehat{AFB}=180^0\)(hai góc kề bù)

=>\(\widehat{BFD}+60^0=180^0\)

=>\(\widehat{BFD}=120^0=\widehat{CDF}\)

Xét tứ giác BFDC có FD//BC

nên BCDF là hình thang

Hình thang BCDF có \(\widehat{BFD}=\widehat{CDF}\)

nên BCDF là hình thang cân

c:

ΔABF đều

=>BF=AF

=>\(BF=\dfrac{AD}{2}\)

Xét ΔBAD có

BF là đường trung tuyến

\(BF=\dfrac{AD}{2}\)

Do đó: ΔBAD vuông tại B

=>AB\(\perp\)BD

AB=CD

AB=BM

Do đó: CD=BM

Xét tứ giác BMCD có

BM//CD

BM=CD

Do đó: BMCD là hình bình hành

Hình bình hành BMCD có \(\widehat{MBD}=90^0\)

nên BMCD là hình chữ nhật

=>BC cắt MD tại trung điểm của mỗi đường

mà E là trung điểm của BC

nên E là trung điểm của MD

=>M,E,D thẳng hàng

28 tháng 7 2018

(Hình vẽ chưa được chuẩn lắm, bạn vẽ lại cho chuẩn nha)

A B C D H 4 cm 6 cm

Vẽ thêm \(BH\perp CD\left(H\in CD\right)\)

Ta có tứ giác ABHD có 3 góc vuông

=> Tứ giác ABHD là hình chữ nhật

=> AB = HD = 4 cm ; AD = BH = 6 cm

=> HC = CD - HD = 12 - 4 = 8 (cm)

Ta thấy: Tam giác BHC vuông tại H

Áp dụng định lý Pytago, ta có: \(BC=\sqrt{BH^2+CH^2}=\sqrt{6^2+8^2}=\sqrt{100}=10\) (Cm)

Vậy BC = 10 cm

a: Xét tứ giác ABED có

góc BAD=góc ADE=góc BED=90 độ

nên ABED là hình chữ nhật

b: Xét tứ giác BMCD có

BM//CD
BM=CD
Do đo; BMCD là hình bình hành

c:

Gọi O là trung điểm của AE

góc AIE=90 độ

mà IO là trung tuyến

nên IO=AE/2=BD/2

Xét ΔIBD có

IO là trung tuyến

IO=BD/2

Do đó: ΔIBD vuông tại I