K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2021

Kẻ AG⊥CD, BH⊥CD, IK⊥CD

Chứng minh được \(\Delta BHC=\Delta AGD\left(ch-gn\right)\)

Ta có ABHG là hình chữ nhật

Ta có CH+HG+GD=CD

Mà CH=DG \(\left(\Delta BHC=\Delta AGD\right)\)

\(\Rightarrow\)2HC+HG=CD

Mà HG=AB (ABHG là hình chữ nhật)

\(\Rightarrow\)2HC+AB=CD

\(\Rightarrow\)HC=\(\dfrac{CD-AB}{2}=3\left(cm\right)\)

Theo định lí Pytago: \(BH=\sqrt{BC^2-HC^2}=\sqrt{5^2-3^2}=4\left(cm\right)\)

Ta có IK//BH (cùng  ⊥DC), DI=IB

\(\Rightarrow\)IK là đường trung bình \(\Delta DBH\)

\(\Rightarrow IK=\dfrac{1}{2}BH=\dfrac{1}{2}\cdot4=2\left(cm\right)\)

 

 

9 tháng 8 2021

G là góc nào vậy bạn

25 tháng 7 2017

từ B kẻ B F vuông góc vs CD( F thuộc CD) và từ A kẻ A G  vuông góc vs CD(G thuộc Cd)

xét tg ADG và tg BCF có:  AGD =BFC=90(cách vẽ), AD=BC,   ADG=BCF (do tg ABCD là hthang cân)

   => tg ADG=tg BCF(ch-gn)=>DG=FC

xét tg ABFG có: AB//GF(vì AB//CD, G và F thuộc CD) và AG//BH (cùng // DC)=>tg ABFG là hbh=.AB=GF=4cm

ta có: DC=DG+GF+FC

    <=>10=2.FC+4

<=>FC=3cm hay DG=3cm(vì DG=FC)

xet tg BCF vuông tại F(cách vẽ)  có: BF^2 +FC^2 = BC^2( đl py-ta-go)

                                                       <=>BF^2=BC^2-FC^2=5^2 -3^2=16<=>BF=4(vì BF>0)

xét tg CHE có: BF//EH(cùng vuông góc vs CD)=>DF/DH=DB/DE(đl ta-lét)

                                                                           <=>(DG+GF)/(DC+CH)=DB/(DB+BE)

                                                                           <=>(3+4)/(10+HC)=DB/2DB   (vì DB=BE)

                                                                          <=>7/(10+HC)=1/2 =>10+HC=7.2=14=>HC=14-10=4cm

vậy độ dài cạnh HC là 4 cm

13 tháng 9 2015

Hạ BK⊥DH(K∈DH);AF⊥DH(F∈DH).

ΔADF=ΔBCK(c.h−g.n) nên DF=CK.

AB//FK,AF//BK→AB=FK.

Do đó KC=CD−AB2=3→DK=7.

BK//EH,BD=BE⟶DK=KH=DH2→DH=14→CH=4.

27 tháng 12 2019

a) Ta có: AB = AD = CD/2 và M là trung điểm của CD (gt)

⇔ AB = DM và AB // DM

Do đó tứ giác ABMD là hình bình hành có AB = AD. Vậy ABMD là hình thoi.

b) M là trung điểm của CD nên BM là trung tuyến của ΔBDC mà MB = MD = MC. Do đó ΔBDC là tam giác vuông tại B hay DB ⊥ BC

c) ABMD là hình thoi (cmt) ⇔ ∠D1 = ∠D2

Do đó hai tam giác vuông AHD và CBD đồng dạng (g.g)

d) Ta có :

Xét tam giác vuông AHB, ta có :

Dễ thấy tứ giác ABCM là hình bình hành (AB // CM và AB = CM)

⇒ BC = AM = 3 (cm)

Ta có:

M là trung điểm của DC nên

SBMD = SBMC = SBCD/2 = 3 (cm2) (chung đường cao kẻ từ B và MD = MC)

Mặt khác ΔABD = ΔMDB (ABCD là hình thoi)

⇔ SABD = SBMD = 3 (cm2)

Vậy SABCD = SABD + SBMD + SBMC = 9 (cm2)

5 tháng 2 2021

Mày N Mày Chết M Mày Đi Kêu Cặk