K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2017

A B C D H K

kẻ AH vuông góc  với DC, BK vuông góc với DC 

do AB song song với CD , AH song song với BK suy ra ABHK là hình bình hành  

\(\Rightarrow AB=HK=3,\)\(\Rightarrow DH+KC=9-3=6\Rightarrow KC=6-DH\),\(\)

đặt DH=x 

  ap dung dl pitago trong tam giac vuong ADH \(AH^2+DH^2=AD^2\Rightarrow AH^2=4^2-x^2\)

                                      tam giac vuong BKC \(BK^2+KC^2=BC^2\Rightarrow BK^2=6^2-\left(6-x\right)^2\)

ma \(BK=AH\Rightarrow BK^2=AH^2\Rightarrow\) \(4^2-x^2=6^2-\left(6-x\right)^2\Leftrightarrow16-x^2=36-36+16x-x^2\)

                                                       \(\Leftrightarrow16=16x\Rightarrow x=1\)

\(\Rightarrow AH^2=4^2-1^2=15\Rightarrow AH=\sqrt{15}\)

SABCD=\(\frac{\left(AB+DC\right)AH}{2}=\frac{\left(3+9\right)\sqrt{15}}{2}=6\sqrt{15}\)

4 tháng 8 2021

undefined

Kẻ đường cao AH và đường cao BK . ⇒AB=HK=1cm

Nên ta có : DH+CK=4 (1)

Theo tỉ số lượng giác cho tam giác ADH và BCK ta lại có :

\(\left\{{}\begin{matrix}AH=tan60\cdot DH\\BK=tan30\cdot CK\end{matrix}\right.\)\(\Rightarrow tan60\cdot DH=tan30\cdot CK\left(2\right)\)

Từ (1) và (2) ta có hệ phương trình :

\(\left\{{}\begin{matrix}DK+CK=4\\\sqrt{3}DH-\dfrac{\sqrt{3}}{3}CK=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}DH=1\\CK=3\end{matrix}\right.\)

\(\Rightarrow AH=tan60\cdot DH=\sqrt{3}\cdot1=\sqrt{3}\left(cm\right)\)

\(\Rightarrow S_{ABCD}=12\cdot AH\cdot\left(AB+CD\right)=12\cdot\sqrt{3}\cdot\left(1+5\right)=3\sqrt{3}\left(cm^2\right)\)

Tick hộ nha bạn 😘

14 tháng 6 2016

A B C D H

a) Tính chiều cao của hình thang

  Trong tam giác ADC có: AD2 + AC2 = 52 + 122 = 169 

                                         CD2 = 132 = 169 

     => AD2 + AC2 = CD2 => tam giác ADC vuông tại A

 Kẻ đường cao AH (H thuộc CD)

Ta có: AH.CD = AD.AC => \(AH=\frac{AD.AC}{CD}=\frac{5.12}{13}=\frac{60}{13}cm\)  

b) cm AB = CD/2

\(S_{ABCD}=\frac{AH.\left(AB+CD\right)}{2}=45\Rightarrow AB=\frac{45}{\frac{AH}{2}}-CD=\frac{45}{\frac{60}{13}:2}-13=\frac{13}{2}cm\)

 => AB = CD/2

1 tháng 7 2018

Ta áp dụng công thức Brahmagupta để tính

\(s=\frac{\sqrt{\left(AB^2+CD^2+BD^2+AC^2\right)+8\cdot AB\cdot CD\cdot BD\cdot AC-2\left(AB^4+CD^4+BD^4+AC^4\right)}}{4}\)

A) Thay số vào ta đc  \(S=6\sqrt{55}\approx44,4972\left(cm^2\right)\)

b)  \(S\approx244,1639\left(cm^2\right)\)

hok tốt ...

26 tháng 7 2019

Công thức Brahmagupta là công thức tính diện tích của một tứ giác nội tiếp (tứ giác mà có thể vẽ một đường tròn đi qua bốn đỉnh của nó) mà hình thang ko có đường tròn nào đi qua đủ bốn đỉnh của nó nên công thức này ko được áp dụng vào bài này

5 tháng 7 2017

Q ở đâu z bạn?

5 tháng 7 2017

diện tích hình thang ABCD là:

(4+9)*5:2=32,5(cm2)

              đáp số:32,5cm2

cick cho mk nhé!