Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thực ra thì có 1 định lí là nếu 1 tứ giác có 2 đường chéo vuông góc thì diện tích tứ giác bằng 1 nửa tích 2 đường chéo.
Nên \(S_{ABCD}=\frac{1}{2}AC.BD=\frac{1}{2}.3.4=6cm^2\),chẳng cần biết AB để làm gì cả :))
Chứng minh cũng đơn giản thoi
Tứ giác ABCD có AC và BD vuông góc tại H
Tam giác ABD có đường cao AH \(\Rightarrow S_{ABD}=\frac{1}{2}BD.AH\)
Tam giác BCD có đường cao CH \(\Rightarrow S_{BCD}=\frac{1}{2}BD.CH\)
Vậy \(S_{ABCD}=S_{ABD}+S_{CBD}=\frac{1}{2}BD\left(BH+CH\right)=\frac{1}{2}BD.AC\)
Xooooong !!!
. a) HS tự chứng minh
b) Kẻ đường cao AH, BK,chứng minh được DH = CK
Ta được H D = C D − A B 2 = 3 c m
Þ AH = 4cm Þ SABCD = 20cm2
Gọi O là giao điểm của AC và BD
\(S_{\Delta ABC}=\frac{1}{2}AC.BO\)
\(S_{\Delta ADC=\frac{1}{2}AC.DO}\)
\(S_{\Delta ABC}+S_{\Delta ADC}=\frac{1}{2}AC.BO+\frac{1}{2}AC.BO\)
\(S_{\Delta BCD=\frac{1}{2}AC\left(BO+DO\right)}\)
\(=\frac{1}{2}AC.BD=\frac{1}{6}.6.3,6=10,8cm^2\)
Do hình thang ABCD có 2 đường chéo vuông góc với nhau nên
SABCD= 1/2.AC.BD=1/2.6.3,6=10,8(dm2)
Vậy SABCD=10,8dm2
cảm ơn