Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a;so con lai se chia het cho 5
vi tong cua 2 so chia het cho 5 khi ca 2 so do chia het cho5
b;so con lai se chia het cho7
vi hieu cua hai so chi het cho7 khi va chi khi ca hai so do cung chia het cho7
không vì số chia hết cho 2 là sô chẵn và số chia hết cho 5 là số lẻ hoặc chẵn nên 1 số trường hợp như 5 . 6 = 30 8 . 5 = 40 , ................ vậy 1 số trường hợp sẽ chia hết cho 2 và 5 còn 1 sô trường hợp thì ko thế chia hết cho 2 và 5
d) Ta có: n + 6 chia hết cho n+1
n+1 chia hết cho n+1
=> [(n+6) - (n+1)] chia hết cho n+1
=> (n+6 - n - 1) chia hết cho n + 1
=> 5 chia hết cho n+1
=> n+1 thuộc { 1; 5 }
Nếu n+1 = 1 thì n = 1-1=0
Nếu n+1=5 thì n= 5-1=4.
Vậy n thuộc {0;4}
e) Ta có: 2n+3 chia hết cho n-2 (1)
n-2 chia hết cho n-2 => 2(n-2) chia hết cho n-2 => 2n - 4 chia hết cho n-2 (2)
Từ (1) và (2) => [(2n+3) - (2n-4)] chia hết cho n-2
=> (2n+3 - 2n +4) chia hết cho n-2
=> 7 chia hết cho n-2
Sau đó xét các trường hợp tương tự như phần d.
Số thứ nhất có dạng 5k1 + r. ( k1 N )
Số thứ hai có dạng 5k2 + r ( k2 N )
Hiệu 2 số là:
( 5k1 + r ) - ( 5k2 + r ) = 5 ( k1 - k2 ) chia hết cho 5. ( Giả sử k1k2 ).
Gọi hai số đó là a và b ( a , b ∈ N ; a ≥ b )
Ta có a = 5k + c , b = 5t + c ( 0 ≤ c < 5 ; k , t ∈ N )
Do a ≥ b nên k > t
Trừ theo vế tương ứng ta được:
a − b = 5k + c − 5t − c = 5k − 5t
Ta thấy 5k − 5t = 5 ( k − t ) luôn chia hết cho 5 với mọi giá trị của k và t ⇒ điều phải chứng minh.
4 số không chia hết cho 5 là 5k+1, 5k+2,5k+3, 5k+4
=>Tổng của các số dư là:
1+2+3+4=10 chia hết cho 5
Vậy tổng của chúng chia hết cho 5
bạn " tự sướng " à!
rãnh!
Vì trong tích có thừa số 5 nên nó sẽ cha hết cho 5