K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2019

\(\hept{\begin{cases}x^2y+xy^2=30\\x^3+y^3=35\end{cases}}\) <=>  \(\hept{\begin{cases}xy\left(x+y\right)=30\\\left(x+y\right)^3-3xy\left(x+y\right)=35\end{cases}}\) <=>  \(\hept{\begin{cases}xy\left(x+y\right)=30\\\left(x+y\right)^3=125\end{cases}}\)

<=>  \(\hept{\begin{cases}xy\left(x+y\right)=30\\x+y=5\end{cases}}\)  <=>  \(\hept{\begin{cases}xy=6\\x+y=5\end{cases}}\) <=>  \(\orbr{\begin{cases}x=2,y=3\\x=3;y=2\end{cases}}\)

12 tháng 2 2017

a/ \(\hept{\begin{cases}\sqrt{xy}+\sqrt{1-y}=\sqrt{y}\left(1\right)\\2\sqrt{xy-y}-\sqrt{y}=-1\left(2\right)\end{cases}}\)

Điều kiện: \(\hept{\begin{cases}x\ge1\\0\le y\le1\end{cases}}\)

Xét phương trình (1) ta đễ thấy y = 0 không phải là nghiệm:

\(\sqrt{xy}+\sqrt{1-y}=\sqrt{y}\)

\(\Leftrightarrow\sqrt{y}\left(1-\sqrt{x}\right)=\sqrt{1-y}\)

\(\Leftrightarrow1-\sqrt{x}=\frac{\sqrt{1-y}}{\sqrt{y}}\)

\(\Rightarrow1-\sqrt{x}\ge0\)

\(\Leftrightarrow x\le1\)

Kết hợp với điều kiện ta được x = 1 thê vô PT (2) ta được y = 1

12 tháng 2 2017

b/ \(\hept{\begin{cases}\sqrt{\frac{2x}{y}}+\sqrt{\frac{2y}{x}}=3\left(1\right)\\x-y+xy=3\left(2\right)\end{cases}}\)

Xét pt (1) ta có

\(\sqrt{\frac{2x}{y}}+\sqrt{\frac{2y}{x}}=3\)

Đặt \(\sqrt{\frac{x}{y}}=a\left(a>0\right)\)thì pt (1) thành

\(\sqrt{2}a+\frac{\sqrt{2}}{a}=3\)

\(\Leftrightarrow a^2+1=\frac{3}{\sqrt{2}}\)

Tới đây đơn giản rồi làm tiếp nhé

12 tháng 2 2017

3/ \(\hept{\begin{cases}x^4+y^2=\frac{697}{81}\left(1\right)\\x^2+y^2+xy-3x-4y+4=0\left(2\right)\end{cases}}\)

Xét phương trình (2) ta có:

\(x^2+\left(y-3\right)x+y^2-4y+4=0\)

Để PT theo nghiệm x có nghiệm thì 

\(\Delta=\left(y-3\right)^2-4.\left(y^2-4y+4\right)\ge0\)

\(\Leftrightarrow-3y^2+10y-7\ge0\)

\(\Leftrightarrow1\le y\le\frac{7}{3}\)

\(\Leftrightarrow1\le y^2\le\frac{49}{9}\)

Tương tự ta có:

\(0\le x\le\frac{4}{3}\)

\(\Leftrightarrow0\le x^4\le\frac{256}{81}\)

Từ đây ta có: \(x^4+y^2\le\frac{256}{81}+\frac{49}{9}=\frac{697}{81}\)

Dấu = xảy ra khi \(\hept{\begin{cases}x=\frac{4}{3}\\y=\frac{7}{3}\end{cases}}\)

Thế ngược lại hệ không thỏa mãn. Vậy hệ vô nghiệm

11 tháng 2 2017

1/ Điều kiện \(\hept{\begin{cases}x\ge1\\y\ge0\end{cases}}\)\(\hept{\begin{cases}xy+x+y-x^2+2y^2=0\\x\sqrt{2y}-y\sqrt{x-1}=2x-2y\end{cases}}\)

Xét phương trình đầu ta có

\(xy+x+y-x^2+2y^2=0\)

\(\Leftrightarrow\left(x+y\right)\left(2y-x+1\right)=0\)

\(\Rightarrow x=1+2y\)

Thế vào pt dưới ta được

\(\sqrt{2y}\left(y+1\right)=2y+2\)

\(\Leftrightarrow\left(y+1\right)\left(\sqrt{2y}-2\right)=0\)

Tới đây tự làm tiếp nhé 

11 tháng 3 2017

chang hieu gi ca

11 tháng 3 2017

mk ko hiu

28 tháng 6 2021

\(\hept{\begin{cases}2x+\left(3-2xy\right)y^2=3\left(1\right)\\2x^2-x^3y=2x^2y^2-7xy+6\left(2\right)\end{cases}}\)

Biến đổi (2), ta được: \(\left(xy-2\right)\left(2xy-3+x^2\right)=0\)

TH1: \(\hept{\begin{cases}xy-2=0\\2x+\left(3-2xy\right)y^2=3\Leftrightarrow\end{cases}\hept{\begin{cases}xy=2\\2x-y^2-3=0\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{y^2+3}{2}\\\frac{\left(y^2+3\right)y}{2}=2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{y^2+3}{2}\\y^3+3y-4=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{y^2+3}{2}\\\left(y-1\right)\left(y^2+y+4\right)=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}\)

TH2: \(\hept{\begin{cases}2xy-3+x^2=0\\2x+\left(3-2xy\right)y^2=3\end{cases}}\Leftrightarrow\hept{\begin{cases}3-2xy=x^2\\2x+x^2y^2=3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}xy=\frac{3-x^2}{2}\\2x+\frac{\left(3-x^2\right)^2}{4}-3=0\end{cases}\Leftrightarrow}\hept{\begin{cases}xy=\frac{3-x^2}{2}\\x^4-6x^2+8x-3=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}xy=\frac{3-x^2}{2}\\\left(x-1\right)^3\left(x+3\right)=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}\left(h\right)\hept{\begin{cases}x=-3\\y=1\end{cases}}}\)

Vậy \(S=\left\{\left(2;1\right);\left(1;1\right);\left(-3;1\right)\right\}\)

14 tháng 6 2020

 Đó chính  viết tắt cho cụm từ “HNUE Philology Times”. Lấy truyền thông làm mảnh đất hoạt động chính yếu của mình, HPT từ một nhóm bạn nhỏ nay đã trở thành một tập thể gắn kết, nhiệt tình. Tuy ra đời chưa lâu, nhưng HPT đã để lại những dấu ấn rất riêng của mình trong ngôi nhà Văn Khoa

28 tháng 11 2018

a) \(\hept{\begin{cases}x\left(x+2\right)\left(3x+y\right)=64\left(1\right)\\x^2+5x+y=16\left(2\right)\end{cases}}\)

từ pt (2) \(\Rightarrow y=16-x^2-5x\)thay vào pt (1), ta được: 

\(\left(x^2+2x\right)\left(3x+16-x^2-5x\right)=64\)

nhân ra giải phương trình rồi tìm x, tự lm nhé.

b) Hệ pt \(\Leftrightarrow\hept{\begin{cases}2\left(x-y\right)-xy=8+12\sqrt{2}\\\left(x-y\right)^2+2xy=24\end{cases}}\)

Đặt a=x-y; b=xy, thay vào hệ, giải bằng phương pháp cộng tìm a;b, thay số tìm x;y. Tự lm nhé