K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2020

bạn y nhân tạo của mũ a rồi cộng vào là ra được kết quả thôi mình thấy dễ mà

9 tháng 5 2020

Trả lời :

Bn Lê Thanh Vân bn y ở đâu ra ??

- Hok tốt !

^_^

16 tháng 1 2018

Những bài còn lại chỉ cần phân tích ra rồi rút gọn là được nha. Bạn tự làm nha!

16 tháng 1 2018

Đặt \(\hept{\begin{cases}x+y=a\\x-y=b\end{cases}}\)\(\Rightarrow\)ta có hệ \(\hept{\begin{cases}2a+3b=4\\a+2b=5\end{cases}}\Rightarrow\hept{\begin{cases}a=-7\\b=6\end{cases}}\)Từ đó ta có \(\hept{\begin{cases}x+y=-7\\x-y=6\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{1}{2}\\y=-\frac{13}{2}\end{cases}}\)PS: Cái đề chỗ 3(x+y) phải thành 3(x-y) chứ

22 tháng 1 2018

sử dụng bất đẳng thức đối với pt2 he 1

pt 2<=>\(xy+\frac{1}{xy}+\frac{x}{y}+\frac{y}{x}=4\)

áp dụng bdt cô si ta dễ dàng chứng minh được VT>=4. dau = xay ra <=>x=y=1

nhưng x,y có không âm đâu mà được phép áp dụng cosi

28 tháng 11 2018

a) \(\hept{\begin{cases}x\left(x+2\right)\left(3x+y\right)=64\left(1\right)\\x^2+5x+y=16\left(2\right)\end{cases}}\)

từ pt (2) \(\Rightarrow y=16-x^2-5x\)thay vào pt (1), ta được: 

\(\left(x^2+2x\right)\left(3x+16-x^2-5x\right)=64\)

nhân ra giải phương trình rồi tìm x, tự lm nhé.

b) Hệ pt \(\Leftrightarrow\hept{\begin{cases}2\left(x-y\right)-xy=8+12\sqrt{2}\\\left(x-y\right)^2+2xy=24\end{cases}}\)

Đặt a=x-y; b=xy, thay vào hệ, giải bằng phương pháp cộng tìm a;b, thay số tìm x;y. Tự lm nhé

2 tháng 1 2020

HPT

\(\Leftrightarrow\hept{\begin{cases}\left(x^2+1\right)+y\left(x+y-2\right)=2y\\\left(x^2+1\right)\left(x+y-2\right)=y\end{cases}}\)

y=0 khong phai nghiem cua hpt

\(\Rightarrow\hept{\begin{cases}\left(\frac{x^2}{y}+\frac{1}{y}\right)+\left(x+y-2\right)=2\\\left(\frac{x^2}{y}+\frac{1}{y}\right)\left(x+y-2\right)=1\end{cases}}\)

Dat \(\hept{\begin{cases}\frac{x^2}{y}+\frac{1}{y}=a\\x+y-2=b\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}a+b=2\\ab=1\end{cases}}\)

Đến đây là ngon

\(x=\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\)

\(\Leftrightarrow x^3=\left(\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\right)^3\)

\(\Leftrightarrow x^3=3+2\sqrt{2}+3-2\sqrt{2}+3\sqrt[3]{\left(3+2\sqrt{2}\right)\left(3-2\sqrt{2}\right)}\left[\left(3+2\sqrt{2}\right)+\left(3-2\sqrt{2}\right)\right]\)

\(\Leftrightarrow x^3=6+3\sqrt[2]{9-8}.x\)

\(\Leftrightarrow x^3=6+3x\)