Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi x ( giờ ) là thời gian đội 1 làm một mình xong công việc ( x > 12 )
Thời gian đội thứ 2 làm một mình xong công việc là : \(x-7\left(giờ\right)\)
Trong một giờ đội 1 làm được \(\dfrac{1}{x}\left(\text{công việc}\right)\)
Trong một giờ đội 2 làm được \(\dfrac{1}{x-7}\left(\text{công việc}\right)\)
Trong một giờ cả hai đội làm được \(\dfrac{1}{12}\left(\text{công việc}\right)\)
Theo bài ra ta có pt : \(\dfrac{1}{x}+\dfrac{1}{x-7}=\dfrac{1}{12}\Leftrightarrow12\left(x-7\right)+12x=x\left(x-7\right)\Leftrightarrow x^2-31x+84=0\Leftrightarrow\left\{{}\begin{matrix}x=28\left(N\right)\\x=3\left(L\right)\end{matrix}\right.\)
Vậy thời gian đội 1 làm xong công việc là 8 giờ , thời gian đội 2 làm xong công việc là : \(28-7=21\left(giờ\right)\)
a) ĐKXĐ :
\(\hept{\begin{cases}a\ge0\\a\ne4\end{cases}}\)
b) Với \(a\ge0\) và \(a\ne4\)
\(A=\frac{\sqrt{a}+2}{\sqrt{a}+3}-\frac{5}{a+\sqrt{a}-6}+\frac{1}{2-\sqrt{a}}\)
\(=\frac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}-\frac{5}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}-\frac{\sqrt{a}+3}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}\)
\(=\frac{a-4-5-\sqrt{a}-3}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}\)
\(=\frac{a-\sqrt{a}-12}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}\)
\(=\frac{\left(\sqrt{a}+3\right)\left(\sqrt{a}-4\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}\)
\(=\frac{\sqrt{a}-4}{\sqrt{a}-2}\)
Để A > 2
thì \(\frac{\sqrt{a}-4}{\sqrt{a}-2}>2\)
Ta có :
\(\frac{\sqrt{a}-4}{\sqrt{a}-2}-2\)
\(=\frac{\sqrt{a}-4-2\left(\sqrt{a}-2\right)}{\sqrt{a}-2}\)
\(=\frac{\sqrt{a}-4-2\sqrt{a}+4}{\sqrt{a}-2}\)
\(\)\(=\frac{-\sqrt{a}}{\sqrt{a}-2}\)
+) \(-\sqrt{a}< 0\forall a\) \(\Rightarrow a>0\)
+) \(\sqrt{a}-2< 0\) \(\Leftrightarrow a< 4\)
Vậy để A > 2 thì 0 < a < 4
c) Để A = 5
thì \(\frac{\sqrt{a}-4}{\sqrt{a}-2}=5\)
\(\frac{\left(\sqrt{a}-4\right)-5\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-2\right)}=0\)
\(\frac{\sqrt{a}-4-5\sqrt{a}+10}{\sqrt{a}-2}=0\)
\(\Rightarrow-4\sqrt{a}+6=0\)
\(\Rightarrow a=\frac{9}{4}\)( TMĐKXĐ )
Vậy để A = 5 thì a = 9/4
a, A xđ <=> \(\hept{\begin{cases}\sqrt{a}+3\ne0\\a+\sqrt{a}-6\ne0\\2-\sqrt{a}\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}a\ge0\\a\ne2\\a\ne4\end{cases}};a\ne-3\)-3
b, rút gọn: A=\(\frac{\sqrt{a}-4}{\sqrt{a}-2}\)để A> 2 <=> \(\frac{\sqrt{a}-4}{\sqrt{a}-2}\)>2 <=> 1+\(\frac{-2}{\sqrt{a}-2}\)>2 <=> \(\frac{\sqrt{a}}{2-\sqrt{a}}\)>0
mà a\(\ge\)0 <=> \(\sqrt{a}\ge0\)=> \(2-\sqrt{a}\)>0 <=> a<4
kết hợp với điều kiện, ta được: \(0\le a< 4;a\ne2\)
c, để A = 5 thì \(\frac{-2}{\sqrt{a}-2}\)+1=5
<=> \(\frac{-2}{\sqrt{a}-2}\)=4
<=> \(a=\frac{9}{4}\)(t/m)
KL..............
Gọi giao điểm của OM với đường tròn (O;R) là I
\(\Delta\)AMO vuông tại A có AI là đường trung tuyến ứng với cạnh huyền OM nên AI=\(\frac{1}{2}\)OM mà OM=2R nên AI=R.
\(\Delta\)OAI có OA=OI=AI(=R) nên \(\Delta\)OAI đều nên góc AOM=60 độ
Vì tiếp tuyến tại A và B của (O;R) cắt nhau tại M nên áp dụng tính chất 2 đường tiếp tuyến cắt nhau thì OM là tia phân giác của góc OAB hay góc AOM bằng một nửa góc AOB hay góc AOB bằng 2.60=120 độ
a) đk: \(x\ge3\)
Ta có: \(\sqrt{x-3}=3x-11\)
\(\Leftrightarrow x-3=9x^2-66x+121\)
\(\Leftrightarrow9x^2-67x+124=0\)
\(\Leftrightarrow\left(9x^2-36x\right)-\left(31x-124\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(9x-31\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-4=0\\9x-31=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=4\\x=\frac{31}{9}\end{cases}}\)
a, \(\sqrt{x-3}=3x-11\left(đk:x\ge3\right)< =>\sqrt{x-3}-1=3x-12\)
\(< =>\frac{x-4}{\sqrt{x-3}+1}-3\left(x-4\right)=0< =>\left(x-4\right)\left(\frac{1}{\sqrt{x-3}+1}-3\right)=0\)
\(< =>\orbr{\begin{cases}x-4=0\\\frac{1}{\sqrt{x-3}+1}=3\end{cases}}< =>\orbr{\begin{cases}x=4\left(tm\right)\\\sqrt{x-3}+1=\frac{1}{3}\left(vl\right)\end{cases}}\)