Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bài: \(B=\frac{14x^2-8x+9}{3x^2+6x+9}\) Tìm GTNN của B lần sau bạn chụp
=> chụp mỗi cái đề thôi=> lớn dẽ nhìn.
\(3x^2+6x+9=3\left[\left(x-\frac{3}{2}\right)^2+3-\frac{9}{4}\right]\)>0 => B tồn tại với mọi x:
\(B=\frac{14\left(x^2+2x+3\right)-28x-14.3-8x+9}{3\left(x^2+2x+3\right)}=\frac{14\left(x^2+2x+3\right)-36x-33}{3\left(x^2+2x+3\right)}\)
\(B=\frac{14}{3}-\frac{12x+11}{\left[\left(x+1\right)^2+2\right]}=\frac{14}{3}-\frac{12\left(x+1\right)-1}{\left(x+1\right)^2+2}\)
xét : \(C=\frac{12y-1}{y^2+2}\)
B nhỏ nhất => C phải lớn nhất=> tìm GTLN của C
\(4-C=4-\frac{12y-1}{y^2+2}=\frac{4y^2-12y+9}{y^2+2}=\frac{\left(2y-3\right)^2}{y^2+2}\ge0\)
đẳng thức khi \(y=\frac{3}{2}\Rightarrow x=\frac{3}{2}-1=\frac{1}{2}\)
Vậy: ta có \(C_{max}=4\Rightarrow B\ge\frac{14}{3}-4=\frac{2}{3}\)
Kết luận: GTNN của B=2/3 khi x=1/2
Có: x2+x+1\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\) với mọi x
=>x3+x2+x+1>x3
=>y3>x3 (1)
Lại có (x+2)3-(x3+x2+x+1)
=x3+8+6x2+12x-x3-x2-x-1=5x2+11x+7=\(5\left(x^2+\frac{11}{5}x+\frac{7}{5}\right)=5\left(x^2+2.x.\frac{11}{10}+\frac{121}{100}+\frac{19}{100}\right)=5\left(x+\frac{11}{10}\right)^2+\frac{19}{20}\ge\frac{19}{20}>0\) với mọi x
=>(x+2)3 \(\ge\) x3+x2+x+1 (2)
Từ (1),(2)
=>x3<y3<(x+2)3
=>y3=(x+1)3 => x3+x2+x+1=(x+1)3
=>x2(x+1)+(x+1)-(x+1)3=0
=>(x2+1)(x+1)-(x+1)3=0
=>(x+1)x=0=>x=0 hoặc x=-1
+x=0 thì y=1
+x=-1 thì y=0
Vậy (x;y)=...............
Ta có: a-b =1
b-c=1
=>a-c=2 => c = a-2
c^2 -ab = 79
(a-2)^2 -ab = 79
a^2 - 4a + 4 -ab = 79
a^2 - 4a -ab = 79-4
a(a-4-b) = 75
a(1-4) =75 (vì a-b =1)
-3a = 75 => a = -25
Giúp lần cuối ! Nho k nha !
Ta có : \(x^2+x+13=y^2\)
\(\Leftrightarrow4\left(x^2+x+13\right)=4y^2\)
\(\Leftrightarrow4x^2+4x+52=4y^2\)
\(\Leftrightarrow\left(4x^2+4x+1\right)-4y^2=-51\)
\(\Leftrightarrow\left(2y\right)^2-\left(2x+1\right)^2=51\)
\(\Leftrightarrow\left(2y+2x+1\right)\left(2y-2x-1\right)=51\)
Rồi xét từng trường hợp là ra nha
Mình làm bừa thôi :>
\(\left|2x-1\right|\ge x-1\)
\(\Leftrightarrow\left|2x-1\right|-x\ge1\)
\(\Leftrightarrow\hept{\begin{cases}2x-1-x\ge-1\\-\left(2x-1\right)-x\ge-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x-1\ge0\\2x-1< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge0\\x\le\frac{2}{3}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge\frac{1}{2}\\x< \frac{1}{2}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\in\left\{\frac{1}{2};+\infty\right\}\\x\in\left\{-\infty;\frac{1}{2}\right\}\end{cases}}\)
\(\Leftrightarrow x\inℝ\)
\(a,4x^2-25=0\\ \Rightarrow\left(2x-5\right)\left(2x+5\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{5}{2}\end{matrix}\right.\\ b,\dfrac{x-3}{5}-\dfrac{x}{2}=\dfrac{3-x}{10}\\ \Rightarrow\dfrac{2\left(x-3\right)-5x}{10}=\dfrac{3-x}{10}\\ \Rightarrow2x-6-5x=3-x\\ \Rightarrow2x-6-5x-3+x=0\\ \Rightarrow-2x-9=0\\ \Rightarrow-2x=9\\ \Rightarrow x=-\dfrac{9}{2}\)
Bài 5:
\(3,\left(-a-b\right)^2\\ =\left(-1\right)^2\cdot\left(a+b\right)^2\\ =1\cdot\left(a+b\right)^2\\ =\left(a+b\right)^2\\ 4,\left(a+b\right)^3+\left(a-b\right)^3\\ =\left(a+b+a-b\right)\left[a^2+2ab+b^2-\left(a+b\right)\left(a-b\right)+a^2-2ab+b^2\right]\\ =2a\left(2a^2+2b^2-a^2+b^2\right)\\ =2a\left(a^2+3b^2\right)\)
\(5,\left(3x+2y\right)\left(3x-2y\right)-\left(x+y\right)\left(x-y\right)\\ =9x^2-4y^2-x^2+y^2\\ =8x^2-3y^2\)
Bài 5:
3.
$(-a-b)^2=[-(a+b)]^2=(-1)^2(a+b)^2=(a+b)^2$
4. $(a+b)^3+(a-b)^3=(a^3+3a^2b+3ab^2+b^3)+(a^3-3a^2b+3ab^2-b^3)$
$=2a^3+6ab^2=2a(a^2+3b^2)$
5.
$(3x+2y)(3x-2y)-(x+y)(x-y)=(9x^2-4y^2)-(x^2-y^2)=9x^2-4y^2-x^2+y^2=8x^2-3y^2$
Bài 6:
3. $29,9.30,1=(30-0,1)(30+0,1)=30^2-0,1^2=900-0,01=899,99$
4. $31,8^2-2.31,8.21,8+21,8^2+68.66=(31,8-21,8)^2+68.66$
$=10^2+4488=100+4488=4588$
5. $144^2+44^2-288.44=144^2+44^2-2.144.44=(144-44)^2=100^2=10000$