Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\)\(18\left(\frac{1}{1}+\frac{1}{1}+\frac{1}{1}\right)\)\(=\)\(18\frac{3}{1}\)\(>\)\(\left(9+5\sqrt{3}\right)\left(a^2+b^2+c^2\right)\)\(=\)\(0\)
Vậy\(18\frac{3}{1}\)\(>\)\(0\)
Chứng minh là \(18\frac{3}{1}\)\(>\)\(0\)là đúng
chúc bạn học tốt
Bất đẳng thức trên
<=> + 1 + + 1 + + 1 ≥ 3
<=> + + ≥ 3 (*)
Ta có: VT(*) ≥
Ta sẽ chứng minh: (a + 1)(b + 1)(c + 1) ≥ (ab + 1)(bc + 1)(ca + 1)
<=> abc + ab + bc + ca + a + b + c + 1
≥ a2b2c2 + abc(a + b + c) + ab + bc + ca + 1
<=> 3 ≥ a2b2c2 + 2abc (**)
Theo Cosi: 3 = a + b + c ≥ 3 => ≤ 1 => abc ≤ 1
Vậy (**) đúng => (*) đúng.
Vì abc = 1 nên \(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\)\(=\frac{ac}{abc+ac+c}+\frac{abc}{abc^2+abc+ac}+\frac{c}{ca+c+1}\)
\(=\frac{ac}{ac+c+1}+\frac{1}{ac+c+1}+\frac{c}{ac+c+1}=\frac{ac+c+1}{ac+c+1}=1\)(*)
Áp dụng bất đẳng thức Bunyakovsky dạng phân thức và áp dụng đẳng thức (*), ta được:
\(\frac{a}{\left(ab+a+1\right)^2}+\frac{b}{\left(bc+b+1\right)^2}+\frac{c}{\left(ca+c+1\right)^2}\)\(=\frac{\left(\frac{a}{ab+a+1}\right)^2}{a}+\frac{\left(\frac{b}{bc+b+1}\right)^2}{b}+\frac{\left(\frac{c}{ca+c+1}\right)^2}{c}\)
\(\ge\frac{\left(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\right)^2}{a+b+c}=\frac{1}{a+b+c}\)
Đẳng thức xảy ra khi a = b = c = 1
(
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhh
hhhhhhhhhhhhh
Đặt \(\left(\frac{1}{a},\frac{1}{b},\frac{1}{c}\right)=\left(x,y,z\right)\)
\(x+y+z\ge\frac{x^2+2xy}{2x+y}+\frac{y^2+2yz}{2y+z}+\frac{z^2+2zx}{2z+x}\)
\(\Leftrightarrow x+y+z\ge\frac{3xy}{2x+y}+\frac{3yz}{2y+z}+\frac{3zx}{2z+x}\)
\(\frac{3xy}{2x+y}\le\frac{3}{9}xy\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}\right)=\frac{1}{3}\left(x+2y\right)\)
\(\Rightarrow\Sigma_{cyc}\frac{3xy}{2x+y}\le\frac{1}{3}\left[\left(x+2y\right)+\left(y+2z\right)+\left(z+2x\right)\right]=x+y+z\)
Dấu "=" xảy ra khi x=y=z
Bài này làm hoài :v
Áp dụng BĐT Cauchy-Schwarz và BĐT AM-GM ta có:
\(VT=\frac{b^2c^2}{ab+ac}+\frac{a^2c^2}{ab+bc}+\frac{a^2b^2}{ac+bc}\)
\(\ge\frac{\left(ab+bc+ca\right)^2}{2\left(ab+bc+ca\right)}=\frac{ab+bc+ca}{2}\)
\(\ge\frac{3\sqrt[3]{\left(abc\right)^2}}{2}=\frac{3}{2}=VP\)
Khi a=b=c=1
Đặt \(\left\{a;b;c\right\}\rightarrow\left\{\frac{1}{x};\frac{1}{y};\frac{1}{z}\right\}\)Khi đó : \(\frac{1}{x}.\frac{1}{y}.\frac{1}{z}=\frac{1}{x.y.z}=a.b.c=1< =>x.y.z=1\)
\(BĐT< =>\frac{1}{\left(\frac{1}{x}\right)^3\left(\frac{1}{y}+\frac{1}{z}\right)}+\frac{1}{\left(\frac{1}{y}\right)^3\left(\frac{1}{y}+\frac{1}{x}\right)}+\frac{1}{\left(\frac{1}{z}\right)^3\left(\frac{1}{x}+\frac{1}{y}\right)}\ge\frac{3}{2}\)
\(< =>\frac{x^3yz}{y+z}+\frac{y^3xz}{z+x}+\frac{z^3xy}{x+y}\ge\frac{3}{2}\)\(< =>\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\ge\frac{3}{2}\)(*)
Ta chỉ cần chỉ ra bất đẳng thức (*) đúng thì bài toán được giải quyết , thật vậy :
Theo bất đẳng thức Bunhiacopxki dạng phân thức :
\(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{y+z+z+x+x+y}=\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}\) (**)
Sử dụng bất đẳng thức AM-GM ta có :
\(x+y+z\ge3\sqrt[3]{xyz}=3\sqrt[3]{1}=3\)Tương đương \(\frac{x+y+z}{2}\ge\frac{3}{2}\)(***)
Từ (**) và (***) ta được \(\frac{x^2}{z+y}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\ge\frac{x+y+z}{2}\ge\frac{3}{2}\)
Suy ra bất đẳng thức (*) đúng . Nên ta có điều phải chứng minh !
Dấu "=" xảy ra khi và chỉ khi \(x=y=z=1< =>a=b=c=1\)
Để bài toán trông quen thuộc hơn:
Đặt a =x; \(\frac{1}{b}=y\) thì bài toán trở thành:
Cho x, y > 0 thỏa mãn x + y =1. CMR: \(\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\ge\frac{25}{2}\).
-------------------------------------------------------------------------
Áp dụng BĐT Cauchy-Schwarz dạng Engel:
\(VT\ge\frac{1}{2}\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2=\frac{25}{2}^{\left(đpcm\right)}\)
P/s: Is it true?
Xí, hôm qua buồn ngủ quá làm thiếu:V
\(VT\ge\frac{1}{2}\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2\ge\frac{1}{2}\left(x+y+\frac{4}{x+y}\right)^2=\frac{25}{2}\)(đpcm)