Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(n^5-5n^3+4n=n\left(n^4-5n^2+4\right)\)
\(=n\left(n^4-n^2-4n^2+4\right)\)
\(=n\left[n^2\left(n^2-1\right)-4\left(n^2-1\right)\right]\)
\(=n\left(n^2-1\right)\left(n^2-4\right)\)
\(=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)\)
\(\Rightarrow\)\(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)
Vì \(n-2;n-1;;n;n+1;n+2\) là tích của 5 số nguyên liên tiếp chia hết cho 3;5;8
Mà ƯC\(_{\left(3;5;8\right)}\)=1
\(\Rightarrow\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\) chia hết cho:
3.5.8=120(đpcm)
a: Xét ΔABC có AE/AB=AF/AC
nên EF//BC và EF=BC/2
Xét ΔBDC có DH/DB=DG/DC
nên HG//BC và HG=BC/2
=>EF//HG và EF=HG
=>EHGF là hình bình hành
b: Để EHGF là hình vuông thì EH=EF và góc HEF=90 độ
=>AD=BC và AD vuông góc với BC
program tinhtoan;
uses crt;
var: i;n:interger;
S:real;
writeln(' Nhap n='); readln(n);
S:=0;
For i:=1 to n*(n*1) do S:=S+\(\frac{1}{i};\)
writeln(' S=',S);
End.
(ps: ko chắc )
Cái gì có khối lượng thì sẽ tạo ra một áp suất đè nên những vật ở dưới nó
\(\frac{1}{ab}+\frac{1}{a^2+b^2}=\frac{1}{2ab}+\frac{1}{2ab}+\frac{1}{a^2+b^2}\ge\frac{1}{2ab}+\frac{4}{a^2+2ab+b^2}\)
\(\ge\frac{1}{\frac{\left(a+b\right)^2}{2}}+\frac{4}{\left(a+b\right)^2}=\frac{2}{1}+\frac{4}{1}=6\)
\(x^2-2x+\left(x-2\right)^2\)
\(=x^2-2x+x^2-4x+4\)
\(=2x^2-6x+4\)
\(=2.\left(x^2-3x+2\right)\)
\(=2.\left[\left(x^2-x\right)-\left(2x-2\right)\right]\)
\(=2.\left[x.\left(x-1\right)-2.\left(x-1\right)\right]\)
\(=2.\left(x-1\right)\left(x-2\right)\)
\(\left|x^2+x-1\right|=2x-3\)
- Với \(x< \dfrac{3}{2}\) vế trái không âm, vế phải âm nên pt vô nghiệm
- Với \(x\ge\dfrac{3}{2}\Rightarrow x^2+x-1\ge\left(\dfrac{3}{2}\right)^2+\dfrac{3}{2}-1>0\) nên pt trở thành:
\(x^2+x-1=2x-3\)
\(\Leftrightarrow x^2-x+2=0\)
\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{7}{4}=0\) (vô nghiệm do \(\left(x-\dfrac{1}{2}\right)^2+\dfrac{7}{4}>0;\forall x\))
Vậy pt đã cho luôn luôn vô nghiệm