Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b.
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x< 2\\x>\dfrac{9}{2}\end{matrix}\right.\\-\dfrac{1}{3}< x< 7\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}-\dfrac{1}{3}< x< 2\\\dfrac{9}{2}< x< 7\end{matrix}\right.\)
Hay \(S=\left(-\dfrac{1}{3};2\right);\left(\dfrac{9}{2};7\right)\)
d.
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x\le-\dfrac{11}{5}\\x\ge7\end{matrix}\right.\\-\dfrac{1}{2}< x< 3\end{matrix}\right.\) \(\Rightarrow x\in\varnothing\) hay BPT vô nghiệm
4:
a: =>4x^4-4x^2+x^2-1=0
=>(x^2-1)(4x^2+1)=0
=>x^2-1=0
=>x=1 hoặc x=-1
b: ĐKXĐ: x<>5; x<>2
PT =>\(\dfrac{x-2}{x-5}+3=\dfrac{6}{x-2}\)
=>\(x^2-4x+4+3\left(x^2-7x+10\right)=6x-30\)
=>4x^2-25x+34-6x+30=0
=>4x^2-31x+64=0
=>\(x\in\varnothing\)
c: =>x^2(2x^2+5)+2=0
=>x^2(2x^2+5)=-2(vôlý)
d: =>(2x-5)(x-2)=3x(x-1)
=>3x^2-3x=2x^2-4x-5x+10
=>x^2+6x-10=0
=>\(x=-3\pm\sqrt{19}\)
e: ĐKXĐ: x<>3; x<>-2
PT =>x^2-3x+5=x+2
=>x^2-4x+3=0
=>(x-3)(x-1)=0
=>x=1(nhận) hoặc x=3(loại)
f: ĐKXĐ: x<>2; x<>3
PT =>2x(x-3)-5(x-2)=5
=>2x^2-6x-5x+10-5=0
=>2x^2-11x+5=0
=>2x^2-10x-x+5=0
=>(x-5)(2x-1)=0
=>x=1/2 hoặc x=5
5:
(d) vuông góc 2x-y-2018=0
=>(d): x+2y+c=0
(C): x^2+4x+4+y^2-6y+9-25=0
=>(x+2)^2+(y-3)^2=25
=>R=5; I(-2;3)
Theo đề, ta có: d(I;(d))=5
=>\(\dfrac{\left|1\cdot\left(-2\right)+2\cdot3+c\right|}{\sqrt{5}}=5\)
=>|c+4|=5căn 5
=>c=5căn5-4 hoặc c=-5căn 5-4
Bài 6:
b: x+3y-6=0
=>x+3y=6
=>3y=6-x
=>y=-1/3x+2
Vì (d) vuông góc với y=-1/3x+2 nên -1/3a=-1
=>a=3
Vậy: (d): y=3x+b
Thay x=2 và y=5 vào (d), ta được:
b+6=5
hay b=-1
ĐKXĐ: \(-1\le x\le3\)
Đặt \(\sqrt{x+1}+\sqrt{3-x}=t\ge\sqrt{x+1+3-x}=2\)
\(\Rightarrow4+2\sqrt{-x^2+2x+3}=t^2\)
\(\Rightarrow\sqrt{-x^2+2x+3}=\dfrac{t^2-4}{2}\) (1)
Phương trình trở thành:
\(t-\dfrac{t^2-4}{2}=2\)
\(\Leftrightarrow2t-t^2=0\Rightarrow\left[{}\begin{matrix}t=0\left(loại\right)\\t=2\end{matrix}\right.\)
Thế vào (1):
\(\Rightarrow\sqrt{-x^2+2x+3}=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\)