K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2016

A>B(Cách làm:CM 10A-1>10B-1)

5 tháng 6 2015

đỡ hơn chưa??? mong các bn giúp mình vs

 

5 tháng 6 2015

Vê trái: 

\(=\frac{2}{\left(x-1\right)\left(x+1\right)}+\frac{4}{\left(x-2\right)\left(x+2\right)}+...+\frac{20}{\left(x-10\right)\left(x+10\right)}\)

\(=\frac{\left(x+1\right)-\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}+\frac{\left(x+2\right)-\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}+...+\frac{\left(x+10\right)-\left(x-10\right)}{\left(x+10\right)\left(x-10\right)}\)

\(=\frac{1}{x-1}-\frac{1}{x+1}+\frac{1}{x-2}-\frac{1}{x+2}+...+\frac{1}{x-10}-\frac{1}{x+10}\)

\(=\left(\frac{1}{x-1}+\frac{1}{x-2}+...+\frac{1}{x-10}\right)-\left(\frac{1}{x+1}+\frac{1}{x+2}+...+\frac{1}{x+10}\right)\)

Vế phải:

\(=\frac{\left(x+1\right)-\left(x-10\right)}{\left(x-10\right)\left(x+1\right)}+\frac{\left(x+2\right)-\left(x-9\right)}{\left(x-9\right)\left(x+2\right)}+...+\frac{\left(x+10\right)-\left(x-1\right)}{\left(x-1\right)\left(x+10\right)}\)

\(=\frac{1}{x-10}-\frac{1}{x+1}+\frac{1}{x-9}-\frac{1}{x+2}+...+\frac{1}{x-1}-\frac{1}{x+10}\)

\(=\left(\frac{1}{x-1}+\frac{1}{x-2}+...+\frac{1}{x-10}\right)-\left(\frac{1}{x+1}+\frac{1}{x+2}+...+\frac{1}{x+10}\right)\) = vế phải

=> đpcm

 

23 tháng 2 2020

đề là gì ?

23 tháng 2 2020

giai pt

13 tháng 5 2018

đáp số là .........

mình ko biết ^.^ :))

13 tháng 5 2018

Bạn thiệt là vui tính

24 tháng 10 2016

Áp dụng \(\frac{a}{b}< 1\Rightarrow\frac{a}{b}< \frac{a+c}{b+c}\) (a;b;c \(\in\) N*)

Ta có:

\(B=\frac{10^{20}+1}{10^{21}+1}< \frac{10^{20}+1+9}{10^{21}+1+9}=\frac{10^{20}+10}{10^{21}+10}\)

\(B< \frac{10.\left(10^{19}+1\right)}{10.\left(10^{20}+1\right)}=\frac{10^{19}+1}{10^{20}+1}=A\)

=> A > B

25 tháng 10 2016

Hôm qua tôi làm được rồi, cảm ơn cậu!

24 tháng 10 2016

Ta thấy:A=\(\frac{10^{19}+1}{10^{20}+1}\)=>10A=\(\frac{10^{20}+10}{10^{20}+1}\)

=>10A=\(\frac{10^{20}+1+9}{10^{20}+1}\)

=>10A=1+\(\frac{9}{10^{20}+1}\)

Ta thấy:B=\(\frac{10^{20}+1}{10^{21}+1}\)

=>10B=\(\frac{10^{21}+10}{10^{21}+1}\)

=>10B=\(\frac{10^{21}+1+9}{10^{21}+1}\)

=>10B=1+\(\frac{9}{10^{21}+1}\)

Do \(\frac{9}{10^{20}+1}\)\(\frac{9}{10^{21}+1}\)=>A > B