Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{x-\sqrt{x}-1}{x-2\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+2}{\sqrt{x}+1}-\dfrac{x-5}{x-\sqrt{x}-2}\right)\)
\(=\dfrac{x-x+\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-2\right)}:\dfrac{x-4-x+5}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-2\right)}\cdot\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{1}\)
\(=\dfrac{x+2\sqrt{x}+1}{\sqrt{x}}\)
Bài 4:
a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HE là đường cao ứng với cạnh huyền AB, ta được:
\(AE\cdot AB=AH^2\)(1)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HF là đường cao ứng với cạnh huyền AC, ta được:
\(AF\cdot AC=AH^2\)(2)
Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)
b) Ta có: \(AE\cdot AB=AF\cdot AC\)(cmt)
nên \(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)
Xét ΔAEF vuông tại A và ΔACB vuông tại A có
\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)
Do đó: ΔAEF\(\sim\)ΔACB(c-g-c)
\(a,ĐK:x\in R\\ PT\Leftrightarrow\sqrt{\left(x-2\right)^2}=3\Leftrightarrow\left|x-2\right|=3\\ \Leftrightarrow\left[{}\begin{matrix}x-2=3\\x-2=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)