K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác ABOC có 

\(\widehat{ABO}+\widehat{ACO}=180^0\)

Do đó: ABOC là tứ giác nội tiếp(1)

Xét tứ giác OHAC có \(\widehat{OHA}+\widehat{OCA}=180^0\)

nên OHAC là tứ giác nội tiếp(2)

Từ (1) và (2) suy ra A,B,C,H,O cùng thuộc 1 đường tròn

b: \(\widehat{BHA}=\widehat{BOA}\)

\(\widehat{AHC}=\widehat{COA}\)

mà \(\widehat{BOA}=\widehat{COA}\)

nên \(\widehat{BHA}=\widehat{CHA}\)

hay HA là tia phân giác của góc BHC

28 tháng 2 2021

b Ta có \(\Lambda ABE=\dfrac{1}{2}sđ\cap BE,\Lambda AFB=\dfrac{1}{2}sđ\cap BE\Rightarrow\Lambda ABE=\Lambda AFB\)

Mà \(\Lambda EAB=\Lambda BAF\) \(\Rightarrow\Delta EAB\sim\Delta BAF\left(g.g\right)\Rightarrow\dfrac{EA}{BA}=\dfrac{AB}{ÀF}\Rightarrow AE\cdot AF=AB^2\left(1\right)\)

Áp dụng hệ thức lượng giác vào \(\Delta AOB\) có:(BH vuông góc với AO)

\(\Rightarrow AH\cdot AO=AB^2\left(2\right)\)

Từ (1) và (2) \(\Rightarrow AH\cdot AO=AE\cdot AF\)

 

a) Xét tứ giác ABOC có

\(\widehat{ABO}\) và \(\widehat{ACO}\) là tứ giác nội tiếp

\(\widehat{ABO}+\widehat{ACO}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: ABOC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

b) Xét (O) có

\(\widehat{BFE}\) là góc nội tiếp chắn \(\stackrel\frown{BE}\)

\(\widehat{ABE}\) là góc tạo bởi dây cung BE và tiếp tuyến BA

Do đó: \(\widehat{BFE}=\widehat{ABE}\)(Hệ quả góc tạo bởi tiếp tuyến và dây cung)

\(\Leftrightarrow\widehat{BFA}=\widehat{EBA}\)

Xét ΔBFA và ΔEBA có 

\(\widehat{BFA}=\widehat{EBA}\)(cmt)

\(\widehat{ABF}\) là góc chung

Do đó: ΔBFA∼ΔEBA(g-g)

\(\Leftrightarrow\dfrac{AF}{AB}=\dfrac{AB}{AE}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AB^2=AF\cdot AE\)(1)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔBOA vuông tại B có BH là đường cao ứng với cạnh huyền AO, ta được:

\(AB^2=AH\cdot AO\)(2)

Từ (1) và (2) suy ra \(AF\cdot AE=AH\cdot AO\)(đpcm)

14 tháng 4 2022

25 tháng 1

Câu c tính gì vậy bạn?

29 tháng 8 2021

thay \(x=3-2\sqrt{2}\) vào P ta có:

\(\dfrac{x+8}{\sqrt{x}+1}=\dfrac{3-2\sqrt{2}+8}{\sqrt{3-2\sqrt{2}}+1}=\dfrac{11-2\sqrt{2}}{\sqrt{2}-1+1}=\dfrac{11-2\sqrt{2}}{\sqrt{2}}\)

29 tháng 8 2021

\(b,x=3-2\sqrt{2}=\left(\sqrt{2}-1\right)^2\)

Thay vào P, ta được:

\(P=\dfrac{3-2\sqrt{2}+8}{\sqrt{\left(\sqrt{2}-1\right)^2}+1}=\dfrac{11-2\sqrt{2}}{\sqrt{2}}=\dfrac{11\sqrt{2}-4}{2}\)

 

 

a: góc OBA+góc OCA=90+90=180 độ

=>ABOC nội tiếp

b: góc OIE=góc OCE=90 độ

=>OICE là tứ giác nội tiếp

=>góc OEI=góc OCI

=>góc OEI=góc OCB

OBAC nội tiếp

=>góc OCB=góc OAB

=>góc OEI=góc OAB

=>góc OEI=góc OAI

=>OIAE nội tiếp

b) Gọi (d3): y=ax+b

Vì (d3)//(d1) nên \(a=-\dfrac{2}{3}\)

Vậy: (d3): \(y=\dfrac{-2}{3}x+b\)

Thay x=6 vào (d2), ta được:

\(y=-2\cdot6+4=-12+4=-8\)

Thay x=6 và y=-8 vào (d3), ta được:

\(\dfrac{-2}{3}\cdot6+b=-8\)

\(\Leftrightarrow b=-4\)

Vậy: (d3): \(y=\dfrac{-2}{3}x-4\)

25 tháng 10 2023

b: B>0

=>\(\dfrac{1}{-x+\sqrt{x}}>0\)

=>\(-x+\sqrt{x}>0\)

=>\(x-\sqrt{x}< 0\)

=>\(\sqrt{x}\left(\sqrt{x}-1\right)< 0\)

=>\(\sqrt{x}-1< 0\)

=>\(\sqrt{x}< 1\)

=>0<=x<1

Kết hợp ĐKXĐ, ta được: 0<x<1