K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 2 2021

a Để hpt có nghiệm \(\left(x;y\right)=\left(-2;3\right)\) \(\Rightarrow\left\{{}\begin{matrix}-2+3m=4\\-2n+3=-3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3m=6\\-2n=-6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=2\\n=2\end{matrix}\right.\)

b Để hpt có vô số nghiệm \(\Leftrightarrow\dfrac{1}{n}=\dfrac{m}{1}=\dfrac{4}{-3}\) \(\left(\dfrac{a}{a'}=\dfrac{b}{b'}=\dfrac{c}{c'}\right)\) 

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{n}=-\dfrac{4}{3}\\m=-\dfrac{4}{3}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m=-\dfrac{4}{3}\\n=-\dfrac{3}{4}\end{matrix}\right.\)

Vậy...

Chọn A

a) Ta có: \(\left\{{}\begin{matrix}3x+y=3\\2x-y=7\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}5x=10\\2x-y=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=2x-7=2\cdot2-7=-3\end{matrix}\right.\)

Vậy: Hệ phương trình có nghiệm duy nhất là (x,y)=(2;-3)

b) Ta có: \(7x^2-2x+3=0\)

a=7; b=-2; c=3

\(\Delta=\left(-2\right)^2-4\cdot7\cdot3=4-84=-80< 0\)

Suy ra: Phương trình vô nghiệm

Vậy: \(S=\varnothing\)

1 tháng 12 2021

\(a,\text{Thay }x=-2;y=3\\ HPT\Leftrightarrow\left\{{}\begin{matrix}3m-2=4\\3-2n=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=2\\n=3\end{matrix}\right.\\ b,HPT\Leftrightarrow\left\{{}\begin{matrix}x=4-my\\n\left(4-my\right)+y=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4-my\\4n-mny+y=-3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=4-my\\y\left(mn-1\right)=4n+3\end{matrix}\right.\)

HPT có vô số nghiệm \(\Leftrightarrow\left\{{}\begin{matrix}mn-1=0\\4n+3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-\dfrac{4}{3}\\n=-\dfrac{3}{4}\end{matrix}\right.\)

a: Vì \(\dfrac{1}{2}\ne-\dfrac{2}{1}\)

nên hệ luôn có nghiệm duy nhất

\(\left\{{}\begin{matrix}x-2y=3-m\\2x+y=3\left(m+2\right)\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x-2y=3-m\\4x+2y=6\left(m+2\right)=6m+12\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}5x=3-m+6m+12=5m+15\\x-2y=3-m\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=m+3\\2y=x-3+m=m+3-3+m=2m\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=m+3\\y=m\end{matrix}\right.\)

Để x>0 và y<0 thì \(\left\{{}\begin{matrix}m+3>0\\m< 0\end{matrix}\right.\)

=>-3<m<0

b: \(A=x^2+y^2=\left(m+3\right)^2+m^2\)

\(=2m^2+6m+9\)

\(=2\left(m^2+3m+\dfrac{9}{2}\right)\)

\(=2\left(m^2+3m+\dfrac{9}{4}+\dfrac{9}{4}\right)\)

\(=2\left(m+\dfrac{3}{2}\right)^2+\dfrac{9}{2}>=\dfrac{9}{2}\forall m\)

Dấu '=' xảy ra khi \(m+\dfrac{3}{2}=0\)

=>\(m=-\dfrac{3}{2}\)

2 tháng 12 2021

Đặt S=x+y, P=x.y
Ta có:S=2a-1, x^2+y^2=S^2-2P=a^2+2a-3
\Rightarrow P=\frac{1}{2}[(2a-1)^2-(a^2+2a-3)]=\frac{1}{2}(3a^2-6a+4)
Trước hết tìm a để hệ có nghiệm.
Điều kiện để hệ có nghiệm:S^2-4P \geq 0 \Leftrightarrow (2a-1)^2-2(3a^2-6a+4)\geq 0
\Leftrightarrow -2a^2+8a-7 \geq 0 \leftrightarrow 2-\frac{\sqrt{2}}{2} \leq a \leq 2+\frac{\sqrt{2}}{2}      (1)
Tìm a để P=\frac{1}{2}(3a^2-6a+4) đạt giá trị nhỏ nhất trên đoạn
        [2-\frac{\sqrt{2}}{2} ;2+\frac{\sqrt{2}}{2}]
Ta có hoành độ đỉnh a_0=\frac{6}{2.3}=1Parabol có bề lõm quay lên do đó \min P=P(2-\frac{\sqrt{2}}{2} )$
Vậy với a=2-\frac{\sqrt{2}}{2}  thì xy đạt giá trị nhỏ nhất.

=>y=2m-3-mx và \(x+m\left(2m-3-mx\right)=m^2-m+3\)

\(\Leftrightarrow\left\{{}\begin{matrix}2m^2-3m-m^2x+x=m^2-m+3\\y=2m-3-mx\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\left(1-m^2\right)=m^2-m+3-2m^2+3m=-m^2+2m+3\\y=2m-3-mx\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\left(m-1\right)\left(m+1\right)=\left(m-3\right)\left(m+1\right)\\y=2m-3-mx\end{matrix}\right.\)

Để phương trình có nghiệm duy nhất thì m<>1; m<>-1

=>\(\left\{{}\begin{matrix}x=\dfrac{m-3}{m-1}\\y=2m-3-\dfrac{m\left(m-3\right)}{m-1}=\dfrac{2m^2-5m+3-m^2+3m}{m-1}=\dfrac{m^2-2m+3}{m-1}\end{matrix}\right.\)

x+y=3

=>\(m^2-2m+3+m-3=3\left(m-1\right)\)

=>m^2-m-3m+3=0

=>m^2-4m+3=0

=>m=1(loại) hoặc m=3(nhận)

12 tháng 2 2023

giúp mình với

 

20 tháng 12 2019

EZ game