\(97^{98^{99}}\times99^{100^{101}}\tim...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2019

S = 101 + (-102) + 103 + (-104) + ... + 2017 + (-2018)

Khi số âm là số nguyên, ta có số số hạng là:

(2018 - 101) : 1 + 1 = 1918 (số hạng)

S = [101 + (-102)] + [103 + (-104)] + ... + [2017 + (-2018)]

S = (- 1) + (-1) + ... + (-1)

Có số số hạng là:

1918 : 2 = 959 (số hạng)

S = (-1) \(\times\) 959

S = - 959

18 tháng 12 2022

P=(1-2-3+4)+(5-6-7+8)+...+(97-98-99+100)

=0+0+...+0

=0

Tui ra kết quả khác.

Tính nhanh:

\(\left(2^{100}+2^{101}+2^{102}\right):\left(2^{97}+2^{98}+2^{99}\right)\\ =2^3\left(2^{97}+2^{98}+2^{99}\right):\left(2^{97}+2^{98}+2^{99}\right)\\ =2^3=8\)

25 tháng 5 2017

Giải:

\(\left(2^{100}+2^{101}+2^{102}\right):\left(2^{97}+2^{98}+2^{99}\right).\)

\(=\left(2^3.2^{97}+2^3.2^{98}+2^3.2^{99}\right):\left(2^{97}+2^{98}+2^{99}\right).\)

\(=2^3\left(2^{97}+2^{98}+2^{99}\right):\left(2^{97}+2^{98}+2^{99}\right).\)

\(=2^3\left[\left(2^{97}+2^{98}+2^{99}\right):\left(2^{97}+2^{98}+2^{99}\right)\right].\)

\(=2^3.1.\)

\(=2^3\left(=8\right).\)

~ Học tốt!!! ... ~ ^ _ ^

~ Nguồn: tự làm, không copy đây đó ... ~

9 tháng 10 2020

Xét tử ta có: 

\(101+100+99+98+...........+3+2+1\)

\(=1+2+3+..........+99+100+101\)

\(=\frac{101.102}{2}=5151\)

Xét mẫu ta có:

\(101-100+99-98+.......+3-2+1\)

\(=\left(101-100\right)+\left(99-98\right)+.......+\left(3-2\right)+1\)

\(=1+1+.......+1+1=51\)

\(\Rightarrow A=\frac{5151}{51}=101\)

30 tháng 7 2017

Ta có: M =\(\frac{101^{102}+1}{101^{103}+1}=\frac{101^{103}+101}{101^{104}+101}=\frac{101^{103}+1+100}{101^{104}+1+100}\)

Mà    : N = \(\frac{101^{103}+1}{101^{104}+1}\)<    M = \(\frac{101^{103}+1+100}{101^{104}+1+100}\)

\(\Rightarrow N< M\)

23 tháng 7 2017

Ta có:

\(M=\frac{101^{102}+1}{101^{103}+1}\)

\(101M=\frac{101^{103}+1+100}{101^{103}+1}=1+\frac{100}{101^{103}+1}\)

Ta lại có:

\(N=\frac{101^{103}+1}{101^{104}+1}\)

\(101N=\frac{101^{104}+1+100}{101^{104}+1}=1+\frac{100}{101^{104}+1}\)

Vì \(\frac{100}{101^{104}+1}< \frac{100}{101^{103}+1}\Rightarrow101N< 101M\Rightarrow N< M\)

29 tháng 5 2020

có một số khi nhân số bé lên 10 lần thì số đó là

25 tháng 11 2017

ta có: \(\dfrac{1}{M}=\dfrac{101^{103}+1}{101^{102}+1}=\dfrac{101^{103}+101-100}{101^{102}+1}=1-\dfrac{100}{101^{102}+1}\)

\(\dfrac{1}{N}=\dfrac{101^{104}+1}{101^{103}+1}=\dfrac{101^{104}+101-100}{101^{103}+1}=1-\dfrac{100}{101^{103}+1}\)

\(\dfrac{100}{101^{102}+1}>\dfrac{100}{101^{103}+1}\Rightarrow1-\dfrac{100}{101^{102}+1}< 1-\dfrac{100}{101^{103}+1}\Rightarrow\dfrac{1}{M}< \dfrac{1}{N}\Rightarrow M>N\)

19 tháng 3 2018

ta có bổ đề sau .với\(\frac{a}{b}>0\Rightarrow\frac{a}{b}< \frac{a+c}{b+c}\)

\(\Rightarrow N=\frac{101^{103}+1}{101^{104}+1}< \frac{101^{103}+1+100}{101^{104}+1+100}\)

mà \(\frac{101^{103}+1+100}{101^{104}+1+100}=\frac{101^{103}+101}{101^{104}+101}\)

\(=\frac{101\left(101^{102+1}\right)}{101\left(101^{103}+1\right)}=\frac{101^{102}+1}{101^{103}+1}=M\)

vậy \(M>N\)

19 tháng 3 2018

Ta có: \(N=\frac{101^{103}+1}{101^{104}+1}< \frac{101^{103}+1+100}{101^{104}+1+100}\)

Mà: \(\frac{101^{103}+1+100}{101^{104}+1+100}=\frac{101^{103}+101}{101^{104}+101}=\frac{101\left(101^{102}+1\right)}{101\left(101^{103}+1\right)}=\frac{101^{102}+1}{101^{103}+1}=M\)

Ta có: \(N< \frac{101^{103}+1+100}{101^{104}+1+100};\frac{101^{103}+1+100}{101^{104}+1+100}=M\)

=>  N<M

=>

30 tháng 1 2020

Ta có : \(101M=\frac{101\left(101^{102}+1\right)}{101^{103}+1}=\frac{101^{103}+100+1}{101^{103}+1}=1+\frac{100}{101^{103}+1};\)

\(101N=\frac{101\left(101^{103}+1\right)}{101^{104}+1}=\frac{101^{104}+1+100}{101^{104}+1}=1\frac{100}{101^{104}+1}\)

Vì \(\frac{100}{101^{103}+1}>\frac{100}{101^{104}+1}\Rightarrow1+\frac{100}{101^{103}+1}>1+\frac{100}{101^{104}+1}\Rightarrow101M>101N\)

=> M > N

6 tháng 12 2020

b, \(3737.43-4343.37=\left(37.101\right).43-\left(43.101\right).37=0\)

suy ra B = 0

c, \(D=\frac{2^{12}\left(13+65\right)}{2^{10}.104}+\frac{3^{10}\left(11+5\right)}{3^9.2^4}=\frac{2^{12}.78}{2^{10}.104}+\frac{3^{10}.16}{3^9.2^4}\)

\(=\frac{2^{12}.2.39}{2^{10}.2^3.13}+\frac{3^{10}.2^4}{3^9.2^4}=\frac{39}{13}+3=6\)

8 tháng 12 2020
Cảm ơn bn nhiều nha