K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Lời giải:

Khi x = 1 + √2 thì hàm số y = ax + 1 có giá trị bằng 3 + √2 nên ta có:

3 + √2 = a(1 + √2 ) + 1 ⇔ a(1 + √2 ) = 2 + √2

Vậy a = √2

Bài 21 trang 66 Sách bài tập Toán 9 Tập 1: Xác định hàm sô y = ax + b biết đồ thị cắt trục tung tại điểm có tung độ bằng 3 và cắt trục hoành tại điểm có hoành độ bằng -2.

Lời giải:

Vì đồ thị hàm số y = ax + b cắt trục tung tại điểm có tung độ bằng 2 nên b=2

Vì đồ thị hàm số y = ax + 2 cắt trục hoành tại điểm có hoành độ bằng -2 nên tung độ của giao điểm bằng 0, ta có:

0 = a.(-2) + 2 ⇔ 2a = 2 ⇔ a = 1

Vậy hàm số đã cho là y = x + 2.

Bài 22 trang 66 Sách bài tập Toán 9 Tập 1: Xác định hàm số trong mỗi trường hợp sau, biết đồ thị của hàm số là đường thẳng đi qua gốc tọa độ:

a. Đi qua điểm A(3; 2)

b. Có hệ số a = 3

c. Song song với đường thẳng y = 3x + 1

Lời giải:

Đồ thị hàm số đi qua gốc tọa độ có dạng y = ax.

a. Đồ thị hàm số đi qua điểm A(3; 2) nên tọa độ A nghiệm đúng phương trình hàm số.

Ta có: 2 = a.3 ⇔ a = 2/3

Vậy hàm số đã cho là y = 2/3.x.

b. Vì a = √3 nên ta có hàm số y = √3 x

c. Đồ thị hàm số y = ax song song với đường thẳng y = 3x + 1 nên a = 3

Vậy hàm số đã cho là y = 3x.

Bài 23 trang 66 Sách bài tập Toán 9 Tập 1: Trên mặt phẳng tọa độ Oxy cho hai điểm A(1; 2), B(3; 4)

a. Tìm hệ số a của đường thẳng đi qua A và B

b. Xác định hàm số biết đồ thị của nó là đường thẳng đi qua A và B

Lời giải:

Đường thẳng đi qua hai điểm A và B có dạng: y = ax + b

a. Đường thẳng đi qua hai điểm A và B nên tọa độ A và B nghiệm đúng phương trình.

Ta có: Tại A: 2 = a + b ⇔ b = 2 – a (1)

Tại B: 4 = 3a + b (2)

Thay (1) và (2) ta có: 4 = 3a + 2 – a ⇔ 2a = 2 ⇔ a = 1

Vậy hệ số a của đường thẳng đi qua A và B là 1.

b. Thay a = 1 vào (1) ta có: b = 2 – 1 = 1

Vậy phương trình đường thẳng AB là y = x + 1

Bài 24 trang 66 Sách bài tập Toán 9 Tập 1: Cho đường thẳng y = (k + 1)x + k (1)

a. Tìm giá trị của k để đường thẳng (1) đi qua gốc tọa độ

b. Tìm giá trị của k để đường thẳng (1) cắt trục tung tại điểm có tung độ bằng 1 - √2

c. Tìm giá trị của k để đường thẳng (1) song song với đường thẳng y = (√3 + 1)x + 3

Lời giải:

a. Đường thẳng y = (k + 1)x + k có dạng là hàm số bậc nhất đi qua gốc tọa độ nên k = 0

Vậy hàm số có dạng: y = x

b. Đường thẳng y = ax + b cắt trục tung tại điểm có tung độ bằng b, mà đường thẳng y = (k + 1)x + k cắt trục tung tại điểm có tung độ bằng 1 - √2 nên k = 1 - √2 .

c. Đường thẳng y = (k + 1)x + k song song với đường thẳng y = (√3 +1)x+3 khi và chỉ khi:

Vậy hàm số có dạng: y = (√3 + 1)x + √3 .

23 tháng 4 2017

a) Hàm số đã cho là y = 2x + b.

Vì đồ thị đi qua điểm A(1,5; 0) nên 0 = 2 . 1,5 + b. Suy ra b = -3.

Vậy hàm số đã cho là y = 2x - 3.

b) Hàm số đã cho là y = 3x + b.

Vì đồ thị đi qua điểm A(2; 2) nên 2 = 3 . 2 + b. Suy ra b = -4.

Vậy hàm số đã cho là y = 3x - 4.

c) Vì đồ thị của hàm số đã cho song song với đường thẳng y = √3x nên nó có hệ số góc là a = √3. Do đó hàm số đã cho là y = √3x + b.

Vì đồ thị đi qua điểm B(1; √3 + 5) nên √3 + 5 = √3 . 1 + b. Suy ra b = 5.

Vậy hàm số đã cho là y = √3x + 5.

23 tháng 4 2017

Bài giải:

a) Hàm số đã cho là y = 2x + b.

Vì đồ thị đi qua điểm A(1,5; 0) nên 0 = 2 . 1,5 + b. Suy ra b = -3.

Vậy hàm số đã cho là y = 2x - 3.

b) Hàm số đã cho là y = 3x + b.

Vì đồ thị đi qua điểm A(2; 2) nên 2 = 3 . 2 + b. Suy ra b = -4.

Vậy hàm số đã cho là y = 3x - 4.

c) Vì đồ thị của hàm số đã cho song song với đường thẳng y = √3x nên nó có hệ số góc là a = √3. Do đó hàm số đã cho là y = √3x + b.

Vì đồ thị đi qua điểm B(1; √3 + 5) nên √3 + 5 = √3 . 1 + b. Suy ra b = 5.

Vậy hàm số đã cho là y = √3x + 5


23 tháng 4 2017

a) Giả sử M là giao điểm của đồ thị của hàm số (1) và đường thẳng y = 2x -1. Vì M thuộc đường thẳng y = 2x - 1 và có hoành độ là x = 2 nên tung độ của nó là y = 2 . 2 - 1 = 3.

Như vậy ta có M(2; 3).

Vì M thuộc đồ thị của hàm số (1) nên 3 = a . 2 - 4. Do đó a = 3,5.

b) Gọi N là giao điểm của đồ thị của hàm số (1) và đường thẳng y = -3x + 2. Lập luận tương tự như trên, ta tìm được N(-1; 5) và a = -9.

23 tháng 4 2017

Bài giải:

a) Giả sử M là giao điểm của đồ thị của hàm số (1) và đường thẳng y = 2x -1. Vì M thuộc đường thẳng y = 2x - 1 và có hoành độ là x = 2 nên tung độ của nó là y = 2 . 2 - 1 = 3.

Như vậy ta có M(2; 3).

Vì M thuộc đồ thị của hàm số (1) nên 3 = a . 2 - 4. Do đó a = 3,5.

b) Gọi N là giao điểm của đồ thị của hàm số (1) và đường thẳng y = -3x + 2. Lập luận tương tự như trên, ta tìm được N(-1; 5) và a = -9.


9 tháng 4 2017

- Bảng giá trị:

Giải bài 54 trang 63 SGK Toán 9 Tập 2 | Giải toán lớp 9

- Vẽ đồ thị:

Giải bài 54 trang 63 SGK Toán 9 Tập 2 | Giải toán lớp 9

a) Đường thẳng qua B(0; 4) song song với Ox cắt đồ thị tại hai điểm M, M' (xem hình). Từ đồ thị ta có hoành độ của M là x = 4, của M' là x = - 4.

Giải bài 54 trang 63 SGK Toán 9 Tập 2 | Giải toán lớp 9