Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu 1:
số hữu tỉ đó là: 1,659842
số vô tỉ đó là: 1,58281134........
Giả sử √2018 là một số hữu tỉ thì tồn tại hai số nguyên m và n sao cho: m/n=√2018 (1) với m/n là phân số tối giản hay m và n có ước chung lớn nhất bằng .1
Khi đó từ (1)<=> m=n√2018<=>m^2=2018n^2 (2)
Từ đó suy ra m^2 chia hết cho 2018 nên m phải chia hết cho .2018 (3)
Do đó tồn tại số nguyên k sao cho .m=2018k
Thay vào (2) ta có thể suy ra n^2=2018k^2 hay .n=√2018k
Do k là số nguyên nên suy ra n không nguyên. Từ đây suy ra giả sử ban đầu là sai, tức là không có cặp số m,n nguyên nào để m/n=.√2018
Vậy √2018 không là số hữu tỉ (√2018∉Q)
Giả sử \(\sqrt{2008}\) là số hữu tỉ, thế thì tồn tại các số nguyên dương m,n sao cho \(\sqrt{2008}=\frac{m}{n}\)(\(\frac{m}{n}\)tối giản và \(m,n\in Z;n\ne0\))
\(\Rightarrow\sqrt{2008}=\frac{m}{n}\Rightarrow2008=\left(\frac{m}{n}\right)^2=\frac{m^2}{n^2}\Rightarrow m^2=2008n^2\)
Suy ra \(m^2\) \(⋮2\Rightarrow m⋮2\)(1)⇒ ta có thể viết m=2k.
Thay m=2k, ta có: \(\left(2k\right)^2=2n^2\Rightarrow4k^2=2n^2\Rightarrow2k^2=n^2\)
\(\Rightarrow n^2⋮2\Rightarrow n⋮2\)(2)
Từ (1) và (2) suy ra trái với giải thiết \(\frac{m}{n}\)là phần số tối giản
Vậy \(\sqrt{2008}\)là số vô tỉ
A= \(\frac{\sqrt{x}-3}{\sqrt{x}-1}\)
<=> \(A=1-\frac{2}{\sqrt{x}-1}\)
Để A nguyên <=> \(\frac{2}{\sqrt{x}-1}\)nguyên <=> \(\orbr{\begin{cases}2⋮\sqrt{x}-1;\sqrt{x}\in Z\\\sqrt{x}-1=\frac{1}{2k};\sqrt{x}\notin Z\end{cases}}\) với k thuộc Z*
+) Nếu \(2⋮\sqrt{x}-1\Leftrightarrow\sqrt{x}-1\in\left\{-2;2;-1;1\right\}\)\(\Leftrightarrow x\in\left\{9;0;4\right\}\)
+) \(\sqrt{x}-1=\frac{1}{2k}\Leftrightarrow\sqrt{x}=\frac{1}{2k}+1\Leftrightarrow x=\left(\frac{1}{2k}+1\right)^2\) và \(\frac{1}{2k}+1\ge0\Leftrightarrow\orbr{\begin{cases}k>0\\k\le-1\end{cases}}\)
Vậy x = 0; x = 4; x = 9 hoặc \(x=\left(\frac{1}{2k}+1\right)^2\)với \(\orbr{\begin{cases}k>0\\k\le-1\end{cases}}\); k là số nguyên
Ta có:
\(\sqrt{2}\approx1,414214,...\)
\(\sqrt{3}\approx1,732051...\)
Nên số hữu tỉ giữa hai số là: \(1,5=\dfrac{3}{2}\)
Mà: \(\sqrt{2}< \sqrt{2,5}< \sqrt{3}\)
Nên số vô tỉ giữa hai số là: \(\sqrt{2,5}\approx1,58...\)