Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a=0;1;2;3\) ở câu a
\(a=0;1;2;3;4;5;6;7\) ở câu b
\(a=0;1;2;3;4;5;6\) ở câu c
ab + a + b = 63
10 x a + b + a + b = 63
11 x a + 2 x b = 63
11 x a + 2 x b = 11 x 5 + 2 x 4 = 11 x 3 + 2 x 15 = 11 x 1 + 2 x 26
Có tất cả 3 cặp số (a;b) : (5;4) ; (3;15); (1;26)
Vì a và b là số có 1 chữ số nên: a=5; b=4
Vậy ab = 54.
ab+a+b=63
=>10a+b+a+b=63
=>11a+2b=63=55+8=33+30=11+52
=>Ta có 3 trường hợp:
TH1: 11a=55=>a=5 và 2b=8 =>b=4
TH2: 11a=33=>a=3 và 2b=30 =>b=15
TH3: 11a=11=>a=1 và 2b=52 => b=26
Ta có:
ab x a x b = bbb
=> ab × a × b = b x 111
=> ab x a = 111
=> ab × a = 3 × 37
=> ab = 37
Vậy số cần tìm là 37
Ủng hộ mk nha ^_-
Tìm số tự nhiên ab. Biết ab+A+B= 63 với A bằng tổng các chữ số của ab và B là tổng các chữ số của A.
Tìm số tự nhiên ab. Biết ab+A+B= 63 với A bằng tổng các chữ số của ab và B là tổng các chữ số của A.
Có 2 trường hợp đối với B
Nếu A+B<(=)9 thì 10A+B+A+B+A+B=63
=>12A+3B=63
=>4A+B=21
Ta thấy B chia 4 dư 1, thay b=1,5,9 tương ứng ta được a=5;4;3
Loại trường hợp b=9, a=3 vì A+B>9
Nếu a+b>(=)10 thì 10a+b+a+b+a+b-9=63
=>12A+3B=72
=>4A+B=24
Ta thấy B chia hết cho 4
=>b=0,4,8 tương ứng ta được a=6;5;4
Loại trường hợp a=6,b=0 vì a+b<10 và trường hợp a=5, b=4 vì a+b<10, giữ lại a=4,b=8
Kết luận, ta có các số 51,45,48
Vậy là chữ số tận cùng của A là 5 (vì không thể là 0 do 3 số đầu không có tổng bằng 31 được)
Tổng 3 chữ số đầu là: 31 - 5= 26
26 = 9 + 9 + 8
Vậy số ban đầu có thể là: 998,5 hoặc 989,5 hoặc 899,5
Bài b)
Các số tự nhiên có 2 chữ số chia hết cho 9 là: 18, 27, 36, 45, 54, 63, 72, 81, 90, 99
Số tự nhiên chia 5 dư 2 có tận cùng là 2 hoặc 7
Vậy ta thấy có 27 và 72 là thoả mãn
Vậy số tự nhiên ab cần tìm là 27 hoặc 72
Thời gian có hạn copy cái này hộ mình vào google xem nha :
https://lazi.vn/quiz/d/16491/nhac-edm-la-loai-nhac-the-loai-gi
Vào xem xong các bạn nhận được 1 thẻ cào mệnh giá 100k nhận thưởng bằng cách nhắn tin vs mình và 1 phần thưởng bí mật là chiếc áo đá bóng,....
Có 300 giải nhanh nha đã có 241 người nhận rồi
OKok